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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 REAL ANALYSIS 

Introduction to the block  

Unit-1 Introduction to Real Numbers: After studying this unit, you will 

learn about Real Numbers, Understand what are Numbers, how to work 

with Real Numbers. 

Unit-2 Basic Set Theory: After studying this unit, you will learn about 

what are sets, working with set theory and Construction of sets  

Unit-3 Extended Real Numbers: In this unit you will study need of real 

numbers with different perspectives. Unit also covers measure and 

integration and real projective plane topics. 

Unit-4 Algebraic Operations: In this unit you will learn meaning of 

algebra, Signed numbers, Algebraic equations & basic approach to 

solving algebraic word problems. 

Unit-5 Sequence and Convergence: In this unit you will study meaning 

of sequence and convergence, limits, Cauchy sequence and related 

theorems 

Unit-6 Lebesgue Measure: This unit will introduce you to Lebesgue 

measure and its properties, null sets and Heine-Borel theorem. 

Unit-7 Lebesgue Outer Measure: In this unit you will study Lebesgue 

outer measure & measurability. 
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UNIT - 1: INTRODUCTION TO REAL 

NUMBERS 

STRUCTURE 

1.0 Objectives 

1.1 Introduction 

1.2 Definition of Real Numbers 

1.2.1 Axiomatic Approach  

1.3 Properties 

1.3.0 Basic Properties 

1.3.1 Compactness 

1.3.2 The Complete Ordered Field 

1.3.3 Advance Properties  

1.4 Application and connectness to its areas  

1.4.0 Real Numbers and its logic 

1.4.1 In Physics  

1.4.2 In Computations  

1.4.3 Real in set theory 

1.5 Vocabulary and Notation  

1.6 Generalization and Extensitions  

1.7 Motivation and Notation 

1.8 Let‘s sum up 

1.9 Keyword 

1.10 Question for Review 

1.11 Suggested Readings & References 

1.12 Answers to check your progress 

1.0 OBJECTIVES 

After studying this unit, you should be able to: 

 learn about Real Numbers 

 Understand what is Numbers 

 Work with Real Numbers 

 Construction with Rational Numbers 
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1.1 INTRODUCTION     

In mathematics, a real number is a value of a continuous quantity that 

can represent a distance along a line. The adjective real in this context 

was introduced in the 17th century by René Descartes, who distinguished 

between real and imaginary roots of polynomials. The real numbers 

include all the rational numbers, such as the integer −5 and 

the fraction 4/3, and all the irrational numbers, such 

as √2 (1.41421356..., the square root of 2, an irrational algebraic 

number). Included within the irrationals are the transcendental numbers, 

such as π (3.14159265...). In addition to measuring distance, real 

numbers can be used to measure quantities such 

as time, mass, energy, velocity, and many more. 

The set of all real numbers is uncountable; that is: while both the set of 

all natural numbers and the set of all real numbers are infinite sets, there 

can be no one-to-one function from the real numbers to the natural 

numbers: the cardinality of the set of all real numbers (denoted  and 

called cardinality of the continuum) is strictly greater than the cardinality 

of the set of all natural numbers (denoted  'aleph-naught'). The statement 

that there is no subset of the real‘s with cardinality strictly greater 

than and strictly smaller than  is known as the continuum 

hypothesis (CH). It is known to be neither provable nor refutable using 

the axioms of Zermelo–Fraenkel set theory including the axiom of 

choice (ZFC), the standard foundation of modern mathematics, in the 

sense that some models of ZFC satisfy CH, while others violate it. 

1.2 DEFINITION REAL NUMBERS 

The real number system R can be defined axiomatically up to 

an isomorphism, which is described hereafter. There are also many ways 

to construct "the" real number system, for example, starting from natural 

numbers, then defining rational numbers algebraically, and finally 

defining real numbers as equivalence classes of their sequences or 

as Dedekind cuts, which are certain subsets of rational numbers. Another 

possibility is to start from some rigorous axiomatization of Euclidean 

geometry (Hilbert, Tarski, etc.) and then define the real number system 

geometrically. All these constructions of the real numbers have been 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Quantity
https://en.wikipedia.org/wiki/Line_(geometry)
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Zero_of_a_function
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Square_root_of_2
https://en.wikipedia.org/wiki/Algebraic_number
https://en.wikipedia.org/wiki/Algebraic_number
https://en.wikipedia.org/wiki/Transcendental_number
https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Uncountable_set
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/One-to-one_function
https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Cardinality_of_the_continuum
https://en.wikipedia.org/wiki/Aleph_number#Aleph-naught
https://en.wikipedia.org/wiki/Continuum_hypothesis
https://en.wikipedia.org/wiki/Continuum_hypothesis
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Axiomatic_system
https://en.wikipedia.org/wiki/Isomorphism
https://en.wikipedia.org/wiki/Dedekind_cut
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shown to be equivalent, that is the resulting number systems 

are isomorphic 

1.2.1 Axiomatic approach 

Let R denote the set of all real numbers. Then: 

 The set R is a field, meaning that addition and multiplication are 

defined and have the usual properties. 

 The field R is ordered, meaning that there is a total order x and y 

such that, for all real numbers x, y and z: 

o if x ≥ y then x + z ≥ y + z; 

o If x ≥ 0 and y ≥ 0 then xy ≥ 0. 

 The order is Dedekind-complete; that is: every non-

empty subset S of R with an upper bound in R has a least upper 

bound (also called supremum) in R. 

The last property is what differentiates the real‘s from the rationals (and 

from other, more exotic ordered fields). For example, the set of rationals 

with square less than 2 has a rational upper bound (e.g., 1.5) but no 

rational least upper bound, because the square root of 2 is not rational. 

These properties imply Archimedean property (which is not implied by 

other definitions of completeness). That is, the set of integers is not 

upper-bounded in the real‘s. In fact, if this were false, then the integers 

would have a least upper bound N; then, N – 1 would not be an upper 

bound, and there would be an integer n such that n > N – 1, and thus n + 

1 > N, which is a contradiction with the upper-bound property of N. 

The real numbers are uniquely specified by the above properties. More 

precisely, given any two Dedekind-complete ordered fields R1 and R2, 

there exists a unique field isomorphism from R1 to R2, allowing us to 

think of them as essentially the same mathematical object. 

For another axiomatization of ℝ, see Tarski's axiomatization of the 

real‘s. 

1.3 PROPERTIES 

https://en.wikipedia.org/wiki/Isomorphic
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Ordered_field
https://en.wikipedia.org/wiki/Dedekind_completion
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Supremum
https://en.wikipedia.org/wiki/Supremum
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Ordered_field#Examples_of_ordered_fields
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Archimedean_property
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Tarski%27s_axiomatization_of_the_reals
https://en.wikipedia.org/wiki/Tarski%27s_axiomatization_of_the_reals
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1.3.1 Basic Properties 

 Any non-zero real number is either negative or positive. 

 The sum and the product of two non-negative real numbers is again a 

non-negative real number, i.e., they are closed under these 

operations, and form a positive cone, thereby giving rise to a linear 

order of the real numbers along a number line. 

 The real numbers make up an infinite set of numbers that cannot 

be injectively mapped to the infinite set of natural numbers, i.e., there 

are uncountable infinitely many real numbers, whereas the natural 

numbers are called countable infinite. This establishes that in some 

sense, there are more real numbers than there are elements in any 

countable set. 

 There is a hierarchy of countable infinite subsets of the real numbers, 

e.g., the integers, the rationals, the algebraic numbers and 

the computable numbers, each set being a proper subset of the next in 

the sequence. The complements of all these sets 

(irrational, transcendental, and non-computable real numbers) with 

respect to the reals are all unaccountably infinite sets. 

 Real numbers can be used to 

express measurements of continuous quantities. They may be 

expressed by decimal representations, most of them having an 

infinite sequence of digits to the right of the decimal point; these are 

often represented like 324.823122147..., where the ellipsis (three 

dots) indicates that there would still be more digits to come. This 

hints to the fact that we can precisely denote only a few, selected real 

numbers with finitely many symbols. 

More formally, the real numbers have the two basic properties of being 

an ordered field, and having the least upper bound property. The first 

says that real numbers comprise a field, with addition and multiplication 

as well as division by non-zero numbers, which can be totally ordered on 

a number line in a way compatible with addition and multiplication. The 

second says that, if a non-empty set of real numbers has an upper bound, 

then it has a real least upper bound. The second condition distinguishes 

the real numbers from the rational numbers: for example, the set of 

https://en.wikipedia.org/wiki/0_(number)
https://en.wikipedia.org/wiki/Negative_number
https://en.wikipedia.org/wiki/Positive_number
https://en.wikipedia.org/wiki/Linear_order
https://en.wikipedia.org/wiki/Linear_order
https://en.wikipedia.org/wiki/Number_line
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Uncountable_set
https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Algebraic_number
https://en.wikipedia.org/wiki/Computable_number
https://en.wikipedia.org/wiki/Complement_(set_theory)
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Transcendental_number
https://en.wikipedia.org/wiki/Measurement
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Decimal_representation
https://en.wikipedia.org/wiki/Decimal_point
https://en.wikipedia.org/wiki/Ellipsis#In_mathematical_notation
https://en.wikipedia.org/wiki/Ordered_field
https://en.wikipedia.org/wiki/Least_upper_bound_axiom
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Upper_and_lower_bounds
https://en.wikipedia.org/wiki/Supremum
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rational numbers whose square is less than 2 is a set with an upper bound 

(e.g. 1.5) but no (rational) least upper bound: hence the rational numbers 

do not satisfy the least upper bound property. 

1.3.2 Completeness 

A main reason for using real numbers is that the real‘s contain all limits. 

More precisely, a sequence of real numbers has a limit, which is a real 

number, if (and only if) its elements eventually come and remain 

arbitrarily close to each other. This is formally defined in the following, 

and means that the real‘s are complete (in the sense of metric 

spaces or uniform spaces, which is a different sense than the Dedekind 

completeness of the order in the previous section). : 

A sequence (xn) of real numbers is called a Cauchy sequence if for any ε 

> 0 there exists an integer N (possibly depending on ε) such that 

the distance |xn − xm| is less than ε for all n and m that are both greater 

than N. This definition, originally provided by Cauchy, formalizes the 

fact that the xn eventually come and remain arbitrarily close to each 

other. 

A sequence (xn) converges to the limit x if its elements eventually come 

and remain arbitrarily close to x, that is, if for any ε > 0 there exists an 

integer N (possibly depending on ε) such that the distance |xn − x| is less 

than ε for n greater than N. 

Every convergent sequence is a Cauchy sequence, and the converse is 

true for real numbers, and this means that the topological space of the 

real numbers is complete. 

The set of rational numbers is not complete. For example, the sequence 

(1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of 

the decimal expansion of the positive square root of 2, is Cauchy but it 

does not converge to a rational number (in the real numbers, in contrast, 

it converges to the positive square root of 2). 

The completeness property of the real‘s is the basis on which calculus, 

and, more generally mathematical analysis are built. In particular, the test 

that a sequence is a Cauchy sequence allows proving that a sequence has 

a limit, without computing it, and even without knowing it. 

https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Completeness_(topology)
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Uniform_space
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Cauchy_sequence
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Augustin_Louis_Cauchy
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Mathematical_analysis
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For example, the standard series of the exponential function 

 

Converges to a real number for every x, because the sums 

 

Can be made arbitrarily small (independently of M) by 

choosing N sufficiently large. This proves that the sequence is Cauchy, 

and thus converges, showing that is e
x
 well defined for every x. 

1.3.3 The Complete Ordered Field 

The real numbers are often described as "the complete ordered field", a 

phrase that can be interpreted in several ways. 

First, an order can be lattice-complete. It is easy to see that no ordered 

field can be lattice-complete, because it can have no largest element 

(given any element z, z + 1 is larger), so this is not the sense that is 

meant. 

Additionally, an order can be Dedekind-complete, as defined in the 

section Axioms. The uniqueness result at the end of that section justifies 

using the word "the" in the phrase "complete ordered field" when this is 

the sense of "complete" that is meant. This sense of completeness is most 

closely related to the construction of the real‘s from Dedekind cuts, since 

that construction starts from an ordered field (the rationals) and then 

forms the Dedekind-completion of it in a standard way. 

These two notions of completeness ignore the field structure. However, 

an ordered group (in this case, the additive group of the field) defines 

a uniform structure, and uniform structures have a notion 

of completeness (topology); the description in the previous 

section Completeness is a special case. (We refer to the notion of 

completeness in uniform spaces rather than the related and better known 

notion for metric spaces, since the definition of metric space relies on 

already having a characterization of the real numbers.) It is not true 

that R is the only uniformly complete ordered field, but it is the only 

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Complete_lattice
https://en.wikipedia.org/wiki/Dedekind_completion
https://en.wikipedia.org/wiki/Ordered_group
https://en.wikipedia.org/wiki/Uniform_space
https://en.wikipedia.org/wiki/Completeness_(topology)
https://en.wikipedia.org/wiki/Metric_space


Notes 

13 

uniformly complete Archimedean field, and indeed one often hears the 

phrase "complete Archimedean field" instead of "complete ordered 

field". Every uniformly complete Archimedean field must also be 

Dedekind-complete (and vice versa), justifying using "the" in the phrase 

"the complete Archimedean field". This sense of completeness is most 

closely related to the construction of the real‘s from Cauchy sequences 

(the construction carried out in full in this article), since it starts with an 

Archimedean field (the rationals) and forms the uniform completion of it 

in a standard way. 

But the original use of the phrase "complete Archimedean field" was 

by David Hilbert, who meant still something else by it. He meant that the 

real numbers form the largest Archimedean field in the sense that every 

other Archimedean field is a subfield of R. Thus R is "complete" in the 

sense that nothing further can be added to it without making it no longer 

an Archimedean field. This sense of completeness is most closely related 

to the construction of the real‘s from surreal numbers, since that 

construction starts with a proper class that contains every ordered field 

(the surreal) and then selects from it the largest Archimedean subfield. 

1.3.4 Advanced Properties 

The reals are uncountable; that is: there are strictly more real numbers 

than natural numbers, even though both sets are infinite. In fact, 

the cardinality of the real‘s equals that of the set of subsets (i.e. the 

power set) of the natural numbers, and Cantor's diagonal argument states 

that the latter set's cardinality is strictly greater than the cardinality of N. 

Since the set of algebraic numbers is countable, almost all real numbers 

are transcendental. The non-existence of a subset of the real‘s with 

cardinality strictly between that of the integers and the real‘s is known as 

the continuum hypothesis. The continuum hypothesis can neither be 

proved nor be disproved; it is independent from the axioms of set theory. 

As a topological space, the real numbers are separable. This is because 

the set of rationals, which is countable, is dense in the real numbers. The 

irrational numbers are also dense in the real numbers; however they are 

uncountable and have the same cardinality as the real‘s. 

https://en.wikipedia.org/wiki/Archimedean_field
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Surreal_number
https://en.wikipedia.org/wiki/Uncountable
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Cardinality_of_the_continuum
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Algebraic_number
https://en.wikipedia.org/wiki/Almost_all
https://en.wikipedia.org/wiki/Transcendental_number
https://en.wikipedia.org/wiki/Continuum_hypothesis
https://en.wikipedia.org/wiki/Logical_independence
https://en.wikipedia.org/wiki/Axiomatic_set_theory
https://en.wikipedia.org/wiki/Separable_space
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The real numbers form a metric space: the distance between x and y is 

defined as the absolute value |x − y|. By virtue of being a totally 

ordered set, they also carry an order topology; the topology arising from 

the metric and the one arising from the order are identical, but yield 

different presentations for the topology in the order topology as ordered 

intervals, in the metric topology as epsilon-balls. The Dedekind cuts 

construction uses the order topology presentation, while the Cauchy 

sequences construction uses the metric topology presentation. The real‘s 

are a contractible (hence connected and simply 

connected), separable and complete metric space of Hausdorff 

dimension 1. The real numbers are locally compact but not compact. 

There are various properties that uniquely specify them; for instance, all 

unbounded, connected, and separable order topologies are 

necessarily homeomorphic to the real‘s. 

Every nonnegative real number has a square root in R, although no 

negative number does. This shows that the order on R is determined by 

its algebraic structure. Also, every polynomial of odd degree admits at 

least one real root: these two properties make R the premier example of 

a real closed field. Proving this is the first half of one proof of 

the fundamental theorem of algebra. 

The real‘s carry a canonical measure, the Lebesgue measure, which is 

the Haar measure on their structure as a topological group normalized 

such that the unit interval [0;1] has measure 1. There exist sets of real 

numbers that are not Lebesgue measurable, e.g. Vitali sets. 

The supremum axiom of the real‘s refers to subsets of the real‘s and is 

therefore a second-order logical statement. It is not possible to 

characterize the real‘s with first-order logic alone: the Löwenheim–

Skolem theorem implies that there exists a countable dense subset of the 

real numbers satisfying exactly the same sentences in first-order logic as 

the real numbers themselves. The set of hyper real numbers satisfies the 

same first order sentences as R. Ordered fields that satisfy the same first-

order sentences as R are called nonstandard models of R. This is what 

makes nonstandard analysis work; by proving a first-order statement in 

some nonstandard model (which may be easier than proving it in R), we 

know that the same statement must also be true of R. 

https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Absolute_value
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Order_topology
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Connected_space
https://en.wikipedia.org/wiki/Separable_space
https://en.wikipedia.org/wiki/Local_compactness
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Homeomorphic
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Real_closed_field
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Haar_measure
https://en.wikipedia.org/wiki/Topological_group
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/Vitali_set
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem
https://en.wikipedia.org/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem
https://en.wikipedia.org/wiki/Hyperreal_number
https://en.wikipedia.org/wiki/Nonstandard_model
https://en.wikipedia.org/wiki/Nonstandard_analysis
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The field R of real numbers is an extension field of the field Q of 

rational numbers, and R can therefore be seen as a vector 

space over Q. Zermelo–Fraenkel set theory with the axiom of 

choice guarantees the existence of a basis of this vector space: there 

exists a set B of real numbers such that every real number can be written 

uniquely as a finite linear combination of elements of this set, using 

rational coefficients only, and such that no element of B is a rational 

linear combination of the others. However, this existence theorem is 

purely theoretical; as such a base has never been explicitly described. 

The well-ordering theorem implies that the real numbers can be well-

ordered if the axiom of choice is assumed: there exists a total 

order on R with the property that every non-empty subset of R has a least 

element in this ordering. (The standard ordering ≤ of the real numbers is 

not a well-ordering since e.g. an open interval does not contain a least 

element in this ordering.) Again, the existence of such a well-ordering is 

purely theoretical, as it has not been explicitly described. If V=L is 

assumed in addition to the axioms of ZF, a well ordering of the real 

numbers can be shown to be explicitly definable by a formula  

A real number may be either computable or un-computable; 

either algorithmically random or not; and either arithmetically random or 

not. 

Check your Progress-1 

1. Discuss the Number Series 

___________________________________________________ 

____________________________________________________ 

2. Discuss about Compact sets  

____________________________________________________ 

____________________________________________________ 

____________________________________________________ 

1.4 APPLICATIONS AND CONNECTIONS 

TO OTHER AREAS 

https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Extension_field
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Basis_(linear_algebra)
https://en.wikipedia.org/wiki/Linear_combination
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1.4.1 Real Numbers and Logic 

The real numbers are most often formalized using the Zermelo–

Fraenkel axiomatization of set theory, but some mathematicians study 

the real numbers with other logical foundations of mathematics. In 

particular, the real numbers are also studied in reverse mathematics and 

in constructive mathematics.
[11]

 

The hyper real as developed by Edwin Hewitt, Abraham Robinson and 

others extend the set of the real numbers by introducing infinitesimal and 

infinite numbers, allowing for building infinitesimal calculus in a way 

closer to the original intuitions of Leibniz, Euler, Cauchy and others. 

Edward Nelson's internal set theory enriches the Zermelo–Fraenkel set 

theory syntactically by introducing a unary predicate "standard". In this 

approach, infinitesimals are (non-"standard") elements of the set of the 

real numbers (rather than being elements of an extension thereof, as in 

Robinson's theory). 

The continuum hypothesis posits that the cardinality of the set of the real 

numbers is C, i.e. the smallest infinite cardinal number after 0N , the 

cardinality of the integers. Paul Cohen proved in 1963 that it is an axiom 

independent of the other axioms of set theory; that is: one may choose 

either the continuum hypothesis or its negation as an axiom of set theory, 

without contradiction. 

1.4.2 In physics 

In the physical sciences, most physical constants such as the universal 

gravitational constant, and physical variables, such as position, mass, 

speed, and electric charge, are modelled using real numbers. In fact, the 

fundamental physical theories such as classical 

mechanics, electromagnetism, quantum mechanics, general relativity and 

the standard model are described using mathematical structures, 

typically smooth manifolds or Hilbert spaces, that are based on the real 
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numbers, although actual measurements of physical quantities are of 

finite accuracy and precision. 

Physicists have occasionally suggested that a more fundamental theory 

would replace the real numbers with quantities that do not form a 

continuum, but such proposals remain speculative.  

1.4.3 In computation 

With some exceptions, most calculators do not operate on real numbers. 

Instead, they work with finite-precision approximations called floating-

point numbers. In fact, most scientific computation uses floating-point 

arithmetic. Real numbers satisfy the usual rules of arithmetic, 

but floating-point numbers do not. 

Computers cannot directly store arbitrary real numbers with infinitely 

many digits. The achievable precision is limited by the number of bits 

allocated to store a number, whether as floating-

pointnumbers or arbitrary-precision numbers. However, computer 

algebra systems can operate on irrational quantities exactly by 

manipulating formulas for them (such as or  ) 

rather than their rational or decimal approximation. It is not in general 

possible to determine whether two such expressions are equal 

(the constant problem). 

A real number is called computable if there exists an algorithm that 

yields its digits. Because there are only accountably many algorithms but 

an uncountable number of real‘s, almost all real numbers fail to be 

computable. Moreover, the equality of two computable numbers is 

an undesirable problem. Some constructivists accept the existence of 

only those real‘s that are computable. The set of definable numbers is 

broader, but still only countable. 

1.4.4 Real’s in set theory 

In set theory, specifically descriptive set theory, the Baire space is used 

as a surrogate for the real numbers since the latter have some topological 
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properties (connectedness) that are a technical inconvenience. Elements 

of Baire space are referred to as "real‘s". 

1.5VOCABULARY AND NOTATION 

1. Mathematicians use the symbol R, or, alternatively, ℝ, the letter 

"R" in blackboard bold to represent the set of all real numbers. As 

this set is naturally endowed with the structure of a field, the 

expression field of real numbers is frequently used when its algebraic 

properties are under consideration. 

2 The sets of positive real numbers and negative real numbers are often 

noted R
+
 and R

−
, respectively; R+ and R− are also used  The non-

negative real numbers can be noted R≥0 but one often sees this set 

noted R
+
 ∪ {0}  In French mathematics, the positive real 

numbers and negative real numbers commonly include zero, and 

these sets are noted respectively ℝ+ and ℝ−. In this understanding, the 

respective sets without zero are called strictly positive real numbers 

and strictly negative real numbers, and are noted ℝ+* and ℝ−*. 

3 The notation R
n
 refers to the Cartesian product of n copies of R, 

which is an n-dimensional vector space over the field of the real 

numbers; this vector space may be identified to the n-

dimensional space of Euclidean geometry as soon as a coordinate 

system has been chosen in the latter. For example, a value 

from R
3
 consists of three real numbers and specifies 

the coordinates of a point in 3-dimensional space. 

4 In mathematics, real is used as an adjective, meaning that the 

underlying field is the field of the real numbers (or the real field). For 

example, real matrix, real polynomial and real Lie algebra. The word 

is also used as a noun, meaning a real number (as in "the set of all 

real‘s"). 

1.6 GENERALIZATIONS AND 

EXTENSIONS 
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The real numbers can be generalized and extended in several 

different directions: 

 The complex numbers contain solutions to 

all polynomial equations and hence are an algebraically closed 

field unlike the real numbers. However, the complex numbers are 

not an ordered field. 

 The affinely extended real number system adds two elements +∞ 

and −∞. It is a compact space. It is no longer a field, or even an 

additive group, but it still has a total order; moreover, it is 

a complete lattice. 

 The real projective line adds only one value ∞. It is also a 

compact space. Again, it is no longer a field, or even an additive 

group. However, it allows division of a non-zero element by zero. 

It has cyclic order described by a separation relation. 

 The long real line pastes together ℵ1* + ℵ1 copies of the real line 

plus a single point (here ℵ1* denotes the reversed ordering of ℵ1) 

to create an ordered set that is "locally" identical to the real 

numbers, but somehow longer; for instance, there is an order-

preserving embedding of ℵ1 in the long real line but not in the 

real numbers. The long real line is the largest ordered set that is 

complete and locally Archimedean. As with the previous two 

examples, this set is no longer a field or additive group. 

 Ordered fields extending the real‘s are the hyper real and 

the surreal numbers; both of them contain infinitesimal and 

infinitely large numbers and are therefore non-Archimedean 

ordered fields. 

 Self-ad joint operators on a Hilbert space (for example, self-ad 

joint square complex matrices) generalize the real‘s in many 

respects: they can be ordered (though not totally ordered), they 

are complete, all their eigenvalues are real and they form a 

real associative algebra. Positive-definite operators correspond to 

the positive real‘s and normal operators correspond to the 

complex numbers 

Continued Fraction 
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In mathematics, a continued fraction is an expression obtained through 

an iterative process of representing a number as the sum of its integer 

part and the reciprocal of another number, then writing this other number 

as the sum of its integer part and another reciprocal, and so on.
[1]

 In 

a finite continued fraction (or terminated continued fraction), the 

iteration/recursion is terminated after finitely many steps by using an 

integer in lieu of another continued fraction. In contrast, an infinite 

continued fraction is an infinite expression. In either case, all integers in 

the sequence, other than the first, must be positive. The integers  are 

called the coefficients or terms of the continued fraction.  

Continued fractions have a number of remarkable properties related to 

the Euclidean algorithm for integers or real numbers. Every rational 

number / has two closely related expressions as a finite continued 

fraction, whose coefficients ai can be determined by applying the 

Euclidean algorithm to (p,q). The numerical value of an infinite 

continued fraction is irrational; it is defined from its infinite sequence of 

integers as the limit of a sequence of values for finite continued fractions. 

Each finite continued fraction of the sequence is obtained by using a 

finite prefix of the infinite continued fraction's defining sequence of 

integers. Moreover, every irrational number Q is the value of a unique 

infinite continued fraction, whose coefficients can be found using the 

non-terminating version of the Euclidean algorithm applied to 

the incommensurable values   and 1. This way of expressing real 

numbers (rational and irrational) is called their continued fraction 

representation. 

It is generally assumed that the numerator of all of the fractions is 1. If 

arbitrary values and/or functions are used in place of one or more of the 

numerators or the integers in the denominators, the resulting expression 

is a generalized continued fraction. When it is necessary to distinguish 

the first form from generalized continued fractions, the former may be 

called a simple or regular continued fraction, or said to be in canonical 

form. 

1.7 MOTIVATION AND NOTATION 
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If the starting number is rational, then this process exactly parallels 

the Euclidean algorithm. In particular, it must terminate and produce a 

finite continued fraction representation of the number. If the starting 

number is irrational, then the process continues indefinitely. This 

produces a sequence of approximations, all of which are rational 

numbers, and these converge to the starting number as a limit. This is the 

(infinite) continued fraction representation of the number. Examples of 

continued fraction representations of irrational numbers are: 

 √  = [4;2,1,3,1,2,8,2,1,3,1,2,8,...]  (sequence A010124 in the OEIS). 

The pattern repeats indefinitely with a period of 6. 

 e = [2;1,2,1,1,4,1,1,6,1,1,8,...] (sequence A003417 in the OEIS). The 

pattern repeats indefinitely with a period of 3 except that 2 are added 

to one of the terms in each cycle. 

 π = [3;7,15,1,292,1,1,1,2,1,3,1,...] (sequence A001203 in the OEIS). 

No pattern has ever been found in this representation. 

 ϕ = [1;1,1,1,1,1,1,1,1,1,1,1,...] (sequence A000012 in the OEIS). 

The golden ratio, the irrational number that is the "most difficult" to 

approximate rationally. See: A property of the golden ratio φ. 

Continued fractions are, in some ways, more "mathematically natural" 

representations of a real number than other representations such 

as decimal representations, and they have several desirable properties: 

 The continued fraction representation for a rational number is finite  

and only rational numbers have finite representations. In contrast, the 

decimal  

 Representation of a rational number may be finite, for 

example 137/1600 = 0.085625 or infinite with a repeating cycle, for 

example 4/27 = 0.148148148148... 

 Every rational number has an essentially unique continued fraction 

representation. Each rational can be represented in exactly two ways, 

since [a0; a1, an−1, an] = [a0; a1, an−1, (an−1), 1]. Usually the first, 

shorter one is chosen as the canonical representation. 
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 The continued fraction representation of an irrational number is 

unique. 

 The real numbers whose continued fraction eventually repeats are 

precisely the quadratic irrationals. For example, the repeating 

continued fraction [1;1,1,1,...] is the golden ratio, and the repeating 

continued  

 Fraction [1; 2, 2, 2,] is the square root of 2. In contrast, the decimal 

representations of quadratic irrationals are apparently random. The 

square roots of all (positive) integers, that are not perfect squares, are 

quadratic irrationals, hence are unique periodic continued fractions. 

 The successive approximations generated in finding the continued 

fraction 

 Representation of a number, that is, by truncating the continued 

fraction representation, are in a certain sense (described below) the 

"best possible". 

Basic formula 

 A continued fraction is an expression of the form 

Where ai and bi can be any complex numbers. Usually they are required 

to be integers. If bi = 1 for all i the expression is called 

a simple continued fraction. If the expression contains a finite number of 

terms, it is called a finite continued fraction. If the expression contains an 

infinite number of terms, it is called an infinite continued fraction.  

Thus, all of the following illustrate valid finite simple continued 

fractions: 

Examples of finite simple continued fractions 

Formula Numeric Remarks 

a0 2 
All integers are 

a degenerate case 
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Calculating continued    fraction representations 

Consider a real number r. Let i r     be the integer part of r and  

Let f=r-i is the fractional part of r. Then the continued fraction 

representation of r is [i, a1, a2, a3] where [a1, a2, a3] is the continued 

fraction representation of 1/f. 

To calculate a continued fraction representation of a number r, write 

down the integer part (technically the floor) of r. Subtract this integer 

part from r. If the difference is 0, stop; otherwise find the reciprocal of 

the difference and repeat. The procedure will halt if and only if r is 

rational. This process can be efficiently implemented using the Euclidean 

algorithm when the number is rational. The table below shows an 

implementation of this procedure for the number 3.245, resulting in the 

continued fraction expansion [3; 4, 12, 4]. 

Construction of the real numbers 

The theorems of real analysis rely intimately upon the structure of the 

real number line. The real number system consists of a set (R), together 

with two binary operations denoted +and ⋅, and an order denoted <. The 

operations make the real numbers a field, and, along with the order, 
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an ordered field. The real number system is the unique complete ordered 

field, in the sense that any other complete ordered field is isomorphic to 

it. Intuitively, completeness means that there are no 'gaps' in the real 

numbers. In particular, this property distinguishes the real numbers from 

other ordered fields (e.g., the rational numbers Q) and is critical to the 

proof of several key properties of functions of the real numbers. The 

completeness of the real‘s is often conveniently expressed as the least 

upper bound property. 

There are several ways of formalizing the definition of the real numbers. 

Modern approaches consist of providing a list of axioms, and a proof of 

the existence of a model for them, which has above properties. 

Moreover, one may show that any two models are isomorphic, which 

means that all models have exactly the same properties, and that one may 

forget how the model is constructed for using real numbers. Some of 

these constructions are described in the main article. 

Order properties of the real numbers 

The real numbers have several important lattice-theoretic properties that 

are absent in the complex numbers. Most importantly, the real numbers 

form an ordered field, in which sums and products of positive numbers 

are also positive. Moreover, the ordering of the real numbers is total, and 

the real numbers have the least upper bound property: 

Every nonempty subset of  that has an upper bound has a least upper 

bound that is also a real number. 

These order-theoretic properties lead to a number of important results in 

real analysis, such as the monotone convergence theorem, 

the intermediate value theorem and the mean value theorem. 

However, while the results in real analysis are stated for real numbers, 

many of these results can be generalized to other mathematical objects. 

In particular, many ideas in functional analysis and operator 

theory generalize properties of the real numbers – such generalizations 

include the theories of Riesz spaces and positive operators. Also, 

mathematicians consider real and imaginary parts of complex sequences, 

or by point wise evaluation of operator sequences. 
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Topological properties of the real numbers 

Many of the theorems of real analysis are consequences of the 

topological properties of the real number line. The order properties of the 

real numbers described above are closely related to these topological 

properties. As a topological space, the real numbers has a standard 

topology, which is the order topology induced by order. Alternatively, by 

defining the metric or distance function  using the absolute 

value function as, the real numbers become the prototypical example of 

a metric space. The topology induced by metric  turns out to be identical 

to the standard topology induced by order. Theorems like 

the intermediate value theorem that are essentially topological in nature 

can often be proved in the more general setting of metric or topological 

spaces rather than in  only. Often, such proofs tend to be shorter or 

simpler compared to classical proofs that apply direct methods. 

Sequences 

A sequence is a function whose domain is a countable, totally 

ordered set. The domain is usually taken to be the natural numbers, 

although it is occasionally convenient to also consider bidirectional 

sequences indexed by the set of all integers, including negative indices. 

Of interest in real analysis, a real-valued sequence, here indexed by the 

natural numbers, is a map : ,
n

a N R n a    . Each  is referred to as 

a term (or, less commonly, an element) of the sequence. A sequence is 

rarely denoted explicitly as a function; instead, by convention, it is 

almost always notated as if it were an ordered ∞-tuple, with individual 

terms or a general term enclosed in parentheses: 

   
1 2 3

( , , )
n n n N

a a a a a


   

A sequence that tends to a limit (i.e., lim
n n

a


 exists) is said to 

be convergent; otherwise it is divergent. (See the section on limits and 

convergence for details.) A real-valued sequence (an) is bounded if there 

exists M R  such that 
n

a M   for all n N .A real-valued sequence 

(an)  is monotonically increasing or decreasing if  
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1 2 3 1 2 3
a a a or a a a    Holds, respectively. If either holds, the 

sequence is said to be monotonic. The monotonicity is strict if the 

chained inequalities still hold with   or   replaced by < or >. 

Given a sequence (an) another sequence (bk) is 

a subsequence of an if  
k

nk
b a for all positive integers k and nk is a 

strictly increasing sequence of natural numbers. 

Check your Progress-2  

1. Write the topological properties of real numbers 
 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

2. Write the definition of sequence and its function 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

 

Limits and convergence 

Roughly speaking, a limit is the value that a function or 

a sequence "approaches" as the input or index approaches some 

value. (This value can include the symbols  when addressing the 

behaviour of a function or sequence as the variable increases or decreases 

without bound.) The idea of a limit is fundamental 

to calculus (and mathematical analysis in general) and its formal 

definition is used in turn to define notions like continuity, derivatives, 

and integrals. (In fact, the study of limiting behaviour has been used as a 

characteristic that distinguishes calculus and mathematical analysis from 

other branches of mathematics.) 

The concept of limit was informally introduced for functions 

by Newton and Leibniz, at the end of 17th century, for 

building infinitesimal calculus. For sequences, the concept was 
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https://en.wikipedia.org/wiki/Sequence
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introduced by Cauchy, and made rigorous, at the end of 19th century 

by Bolzano and Weierstrass, who gave the modern ε-δ definition, which 

follows. 

Definition. Let  f be a real-valued function defined on an interval E R  

.  We say that f(x) tends to L as x  approaches x0 , or that the limit 

of  f(x) as  approaches x0 is L  if, for any 0  , there exists 0   such 

that for all 
0

,0x E x x      ,  implies that ( )f x L . We write 

this symbolically as 
0 0

( ) , lim ( )f x L as x x or x x f x L    . 

Intuitively, this definition can be thought of in the following way: We 

say that  
0

( )f x L as x x  .  when, given any positive number   , no 

matter how small, we can always find a   , such that we can guarantee 

that f(x) and L are less than   apart, as long as x (in the domain of ) is a 

real number that is less than   away from x0 but distinct from x0 . The 

purpose of the last stipulation, which corresponds to the 

condition 
0

0 x x   in the definition, is to ensure 

that 
0

lim ( )x x f x L   does not imply anything about the value 

of f(x0) itself. Actually x0,  does not even need to be in the domain of f in 

order for  
0

lim ( )x x f x to exist. 

In a slightly different but related context, the concept of a limit applies to 

the behaviour of a sequence (an)  when  n becomes large. 

Definition. Let (an )be a real-valued sequence. We say 

that (an)converges to  a if for any 0  there exists a natural number 

N  such that n N   implies that 
n

a a . We write this symbolically 

as lim
n n

a aasn or n a n     

If (an ) fails to converge, we say that (an)  diverges. 

Generalizing to a real-valued function of a real variable, a slight 

modification of this definition (replacement of sequence (an )and term 

an  by function f and value f(x)  and natural numbers N and n by real 

numbers M and x , respectively) yields the definition of the limit 

of f(x) as  increases without bound, notated . Reversing the 

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
https://en.wikipedia.org/wiki/Bernard_Bolzano
https://en.wikipedia.org/wiki/Karl_Weierstrass
https://en.wikipedia.org/wiki/%CE%95-%CE%B4_definition


Notes 

28 

inequality  to  gives the corresponding definition of the limit 

of  as  decreases without bound,  lim ( )x f x . 

Sometimes, it is useful to conclude that a sequence converges, even 

though the value to which it converges is unknown or irrelevant. In these 

cases, the concept of a Cauchy sequence is useful. 

Definition: Let (an) be real valued sequence. We say that (an) is a 

Cauchy sequence, if any 0 , there exists a natural number N such that 

,m n N implies that 
m n

a a  

It can be shown that a real-valued sequence is Cauchy if and only if it is 

convergent. This property of the real numbers is expressed by saying that 

the real numbers endowed with the standard metric  , .R  , is 

a complete metric space. In a general metric space, however, a Cauchy 

sequence need not converge. 

In addition, for real-valued sequences that are monotonic, it can be 

shown that the sequence is bounded if and only if it is convergent. 

 

Uniform and pointwise convergence for sequences of 

functions 

In addition to sequences of numbers, one may also speak of sequences of 

functions on E R , that is, infinite, ordered families of 

functions ( ) :f n E R , denoted 
1

( )
n

f n 


 , and their convergence 

properties. However, in the case of sequences of functions there are two 

kinds of convergence, known as point wise convergence and uniform 

convergence that need not be distinguished. 

Roughly speaking, point wise convergence of functions fn to a limiting a 

function ( ) :f n E R denoted by ( )f n f ,simply means that given 

any , ( ) ( )
n

x E f x f x as n   . In contrast, uniform convergence is 

a stronger type of convergence, in the sense that a uniformly convergent 

sequence of functions also converges point wise, but not conversely. 

Uniform convergence requires members of the family of functions fn,  to 

fall within some error 0  of   f  for every value of  x E , 

https://en.wikipedia.org/wiki/Complete_metric_space
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whenever n N , for some integer N . For a family of functions to 

uniformly converge, sometimes denoted 
n

f f  , such a value of  N 

must exist for any 0  given , no matter how small. Intuitively, we can 

visualize this situation by imagining that, for a large enough N, the 

functions fn,fn+1,fn+2,… are all confined within a 'tube' of width  2

about  f .  for every value in their domain E. . 

The distinction between point-wise and uniform convergence is 

important when exchanging the order of two limiting operations (e.g., 

taking a limit, a derivative, or integral) is desired: in order for the 

exchange to be well-behaved, many theorems of real analysis call for 

uniform convergence. For example, a sequence of continuous functions 

(see below) is guaranteed to converge to a continuous limiting function if 

the convergence is uniform, while the limiting function may not be 

continuous if convergence is only point wise. Karl Weierstrass is 

generally credited for clearly defining the concept of uniform 

convergence and fully investigating its implications. 

There are two kinds of convergence, known as point wise 

convergence and uniform convergence that need to be distinguished. 

Roughly speaking, point wise convergence of functions  to a limiting 

function , denoted , simply means that given any ,  as . In contrast, 

uniform convergence is a stronger type of convergence, in the sense that 

a uniformly convergent sequence of functions also converges  

Compactness 

Compactness is a concept from general topology that plays an important 

role in many of the theorems of real analysis. The property of 

compactness is a generalization of the notion of a set 

being closed and bounded. (In the context of real analysis, these notions 

are equivalent: a set in Euclidean space is compact if and only if it is 

closed and bounded.) Briefly, a closed set contains all of its boundary 

points, while a set is bounded if there exists a real number such that the 

distance between any two points of the set is less than that number. In R , 

sets that are closed and bounded, and therefore compact, include the 

empty set, any finite number of points, closed intervals, and their finite 
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unions. However, this list is not exhaustive; for instance, the 

set    1/ : 0n n N   is the compact set; the cantor ternary set

 0,1c   is another example of a compact set. On the other hand, the 

set  1/ :n n N is not compact because it is bounded but not closed, as 

the boundary point 0 is not a member of the set. The set [0, )   is also 

not compact because it is closed but not bounded. 

For subsets of the real numbers, there are several equivalent definitions 

of compactness. 

Definition. A set E R  is compact if it is closed and bounded. 

This definition also holds for Euclidean space of any finite dimension 

nR , but it is not valid for metric spaces in general. The equivalence of 

the definition with the definition of compactness based on sub covers, 

given later in this section, is known as the Heine-Borel theorem. 

A more general definition that applies to all metric spaces uses the notion 

of a subsequence (see above). 

Definition. A set E in a metric space is compact if every sequence 

in E has a convergent subsequence. 

This particular property is known as sub sequential compactness. In R, a 

set is sub sequentially compact if and only if it is closed and bounded, 

making this definition equivalent to the one given above. Sub sequential 

compactness is equivalent to the definition of compactness based on sub 

covers for metric spaces, but not for topological spaces in general. 

The most general definition of compactness relies on the notion of open 

covers and sub covers, which is applicable to topological spaces (and 

thus to metric spaces and R as special cases). In brief, a collection of 

open sets U


 is said to be an open cover of set X if the union of these 

sets is a superset of X. This open cover is said to have a finite sub 

cover if a finite sub collection of the U


 could be found that also 

covers X. 

Definition. A set X in a topological space is compact if every open cover 

of  X has a finite sub cover. 

https://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem
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Compact sets are well-behaved with respect to properties like 

convergence and continuity. For instance, any Cauchy sequence in a 

compact metric space is convergent. As another example, the image of a 

compact metric space under a continuous map is also compact. 

Check your Progress-3 

1. Discuss the limits and convergence  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

2. Discuss the uniform and point wise convergence  

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

1.8 LETS SUM UP 

In mathematics, a real number is a value of a continuous quantity that 

can represent a distance along a line. The adjective real in this context 

was introduced in the 17th century by René Descartes, who distinguished 

between real and imaginary roots of polynomials. The real numbers 

include all the rational numbers, such as the integer −5 and 

the fraction 4/3, and all the irrational numbers, such as √2 (1.41421356..., 

the square root of 2, an irrational algebraic number). Included within the 

irrationals are the transcendental numbers, such as π (3.14159265...). In 

addition to measuring distance, real numbers can be used to measure 

quantities such as time, mass, energy, velocity, and many more. 

1.9 KEYWORD  

Compactness 
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Compact 

Real 

Space 

Limit 

Convergence 

Series 

Sequence 

Point wise 

1.10 QUESTION FOR REVIEW 

1. Give the Definition of Real Numbers. 

2. What is the compact space? 

3. Give the definition of topology space. 

4. What is compactness? 

5. Give some example of uniform and point wise convergence. 

6. What are sequences? 

7. What is continuous fraction? 

8. Definition of Limit. 

9. Give the definition of convergence with example. 
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1.12 ANSWERS TO CHECK YOUR PROGRESS 

Check in progress 1 

1. Hint check section 1.3 

2. Hint check section 1.7 

Check in progress 2 

1. ans hint - 1.4.5 Topological Properties Of The Real Numbers 

2 ans hint Sequences (22/23) 

 

Check in progress 3 

1. ans hint - 1.0.1 Limits And Convergence 

2. ans hint - 1.4.5.1  Uniform And Pointwise Convergence For 

Sequences Of Functions 
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UNIT - 2  : BASIC SET THEORY 

STRUCTURE 

2.0 Objectives 

2.1 Introduction 

2.2 History of Sets 

2.3 Basic Concept and Notation 

2.4 Axiomatic Set Theory 

2.4.1 Sets Alone 

2.4.2 Sets and Proper Class 

2.5 Application 

2.6 Area Of Study 

2.6.1 Combinatorial Sets Theory 

2.6.2 Descriptive Sets Theory  

2.6.3 Fuzzy Sets Theory 

2.6.4 Inner Model Theory 

2.6.5 Large Cardinals 

2.6.6 Determinancy 

2.6.7 Set Theoritic Topology 

2.7 Let‘s sum up 

2.8 Keyword 

2.9 Question for Review 

2.10 Suggestion Reading& References  

2.11 Answers to check your Progress  

2.0 OBJECTIVES 

After studying this unit, you should be able to: 

 learn about Sets 

 Understand what is sets 

 Work with set theory 

 Construction of sets 

 Learn about basic set theory 
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2.1 INTRODUCTION 

Set theory is a branch of mathematical logic that studies sets, which 

informally are collections of objects. Although any type of object can be 

collected into a set, set theory is applied most often to objects that are 

relevant to mathematics. The language of set theory can be used to define 

nearly all mathematical objects. 

Fig. 1.1 

The modern study of set theory was initiated by Georg 

Cantor and Richard Dedekind in the 1870s. After the discovery 

of paradoxes in naive set theory, such as Russell's paradox, 

numerous axiom systems were proposed in the early twentieth century, 

of which the Zermelo–Fraenkel axioms, with or without the axiom of 

choice, are the best-known. 

Set theory is commonly employed as a foundational system for 

mathematics, particularly in the form of Zermelo–Fraenkel set theory 

with the axiom of choice. Beyond its foundational role, set theory is a 

branch of mathematics in its own right, with an active research 

community. Contemporary research into set theory includes a diverse 

collection of topics, ranging from the structure of the real number line to 

the study of the consistency of large cardinals. 

2.2 HISTORY OF SETS  

Mathematical topics typically emerge and evolve through interactions 

among many researchers. Set theory, however, was founded by a single 

paper in 1874 by Georg Cantor: "On a Property of the Collection of All 

Real Algebraic Numbers".  

Since the 5th century BC, beginning with Greek mathematician Zeno of 

Elea in the West and early Indian mathematicians in the East, 
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mathematicians had struggled with the concept of infinity. Especially 

notable is the work of Bernard Bolzano in the first half of the 19th 

century. Modern understanding of infinity began in 1870–1874 and was 

motivated by Cantor's work in real analysis.
[4]

 An 1872 meeting between 

Cantor and Dedekind influenced Cantor's thinking and culminated in 

Cantor's 1874 paper. 

Cantor's work initially polarized the mathematicians of his day. 

While Karl Weierstrass and Dedekind supported Cantor, Leopold 

Kronecker, now seen as a founder of mathematical constructivism, did 

not. Cantorian set theory eventually became widespread, due to the 

utility of Cantorian concepts, such as one-to-one correspondence among 

sets, his proof that there are more real numbers than integers, and the 

"infinity of infinities" ("Cantor's paradise") resulting from the power 

set operation. This utility of set theory led to the article "Mengenlehre" 

contributed in 1898 by Arthur Schoenflies to Klein's encyclopedia. 

The next wave of excitement in set theory came around 1900, when it 

was discovered that some interpretations of Cantorian set theory gave 

rise to several contradictions, called antinomies or paradoxes. Bertrand 

Russell and Ernst Zermelo independently found the simplest and best 

known paradox, now called Russell's paradox: consider "the set of all 

sets that are not members of themselves", which leads to a contradiction 

since it must be a member of itself and not a member of itself. In 1899 

Cantor had himself posed the question "What is the cardinal number of 

the set of all sets?", and obtained a related paradox. Russell used his 

paradox as a theme in his 1903 review of continental mathematics in 

his The Principles of Mathematics. 

In 1906 English readers gained the book Theory of Sets of Points by 

husband and wife William Henry Young and Grace Chisholm Young, 

published by Cambridge University Press. 

The momentum of set theory was such that debate on the paradoxes did 

not lead to its abandonment. The work of Zermelo in 1908 and the work 

of Abraham Fraenkel and Thoralf Skolem in 1922 resulted in the set of 

axioms ZFC, which became the most commonly used set of axioms for 

set theory. The work of analysts such as Henri Lebesgue demonstrated 
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the great mathematical utility of set theory, which has since become 

woven into the fabric of modern mathematics. Set theory is commonly 

used as a foundational system, although in some areas—such as 

algebraic geometry and algebraic topology—category theory is thought 

to be a preferred foundation. 

2.3 BASIC CONCEPTS AND NOTATION 

Set theory begins with a fundamental binary relation between an 

object o and a set A. If o is a member (or element) of A, the 

notation o ∈ A is used. A set is described by listing elements separated by 

commas, or by a characterizing property of its elements, within braces    

{ }.Since sets are objects, the membership relation can relate sets as well. 

A derived binary relation between two sets is the subset relation, also 

called set inclusion. If all the members of set A are also members of 

set B, then A is a subset of B, denoted A ⊆ B. For example, {1, 2} is a 

subset of {1, 2, 3} , and so is {2} but {1, 4} is not. As insinuated from 

this definition, a set is a subset of itself. For cases where this possibility 

is unsuitable or would make sense to be rejected, the term proper 

subset is defined. A is called a proper subset of B if and only if A is a 

subset of B, but A is not equal to B. Note also that 1, 2, and 3 are 

members (elements) of the set {1, 2, 3} but are not subsets of it; and in 

turn, the subsets, such as {1}, are not members of the set {1, 2, 3}. 

Just as arithmetic features binary operations on numbers, set theory 

features binary operations on sets. The: 

 Union of the sets A and B, denoted A ∪ B, is the set of all objects that 

are a member of A, or B, or both. The union of {1, 2, 3} and {2, 3, 

4} is the set {1, 2, 3, 4} . 

 Intersection of the sets A and B, denoted A ∩ B, is the set of all 

objects that are members of both A and B. The intersection of {1, 2, 

3} and {2, 3, 4} is the set {2, 3} . 

 Set difference of U and A, denoted U \ A, is the set of all members 

of U that are not members of A. The set difference {1, 2, 3} \ {2, 3, 

4} is {1} , while, conversely, the set difference {2, 3, 4} \ {1, 2, 
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3} is {4} . When A is a subset of U, the set difference U \ A is also 

called the complement of A in U. In this case, if the choice of U is 

clear from the context, the notation A
c
 is sometimes used instead 

of U \ A, particularly if U is a universal set as in the study of Venn 

diagrams. 

 Symmetric difference of sets A and B, denoted A △ B or A ⊖ B, is 

the set of all objects that are a member of exactly one 

of A and B (elements which are in one of the sets, but not in both). 

For instance, for the sets {1, 2, 3} and {2, 3, 4} , the symmetric 

difference set is {1, 4} . It is the set difference of the union and the 

intersection, (A ∪ B) \ (A ∩ B) or (A \ B) ∪ (B \ A). 

 Cartesian product of A and B, denoted A × B, is the set whose 

members are all possible ordered pairs (a, b) where a is a member 

of A and b is a member of B. The cartesian product of {1, 2} and 

{red, white} is {(1, red), (1, white), (2, red), (2, white)}. 

 Power set of a set A is the set whose members are all of the possible 

subsets of A. For example, the power set of {1, 2} is { {}, {1}, {2}, 

{1, 2} } . 

Some basic sets of central importance are the empty set (the unique set 

containing no elements; occasionally called the null set though this name 

is ambiguous), the set of natural numbers, and the set of real numbers. 

In mathematics, a collection of particular things or group of particular 

objects is called a set. The theory of sets as developed George Cantor is 

being used in all branches of mathematics nowadays. According to him 

‗A set is a well-defined collection of distinct objects of our perception or 

of our thought, to be conceived as a whole‘. 

As in the case of the concepts of geometrical point, line and a plane, a 

rigid definition is not possible for a set also. Is the intuitive conception of 

a collection or assemblage of things, real or conceptual. 

The examples of the basic concepts of sets are: 

(i) a set of living cricketers in the Australia. 

(ii) a set of the rules for the badminton game; 
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(iii) a set of integers with prescribed conditions; 

(iv) a set of books in the library; 

(v) a set of the states in America; 

Thus, the basic concept of sets is a well-defined collection of objects 

which are called members of the set or elements of the set. Objects 

belongs to the set must be well-distinguished. 

Definition of set: 

A set is a collection of well-defined objects. 

Explanation of the term ―Well-defined‖: 

Well-defined means, it must be absolutely clear that which object 

belongs to the set and which does not. 

For example: 

‗The collection of positive numbers less than 10‘ is a set, because, given 

any numbers, we can always find out whether that number belongs to the 

collection or not. But ‗the collection of good students in your class‘ is not 

a set as in this case no definite rule is supplied by the help of which you 

can determine whether a particular student of your class is good or not. 

Thus, ‗the collection of first five months of a year‘ is a set, but ‗the 

collection of rich man in your town‘ is not a set. 

Now, to get basic concepts of sets about the meaning of well-defined the 

following examples are given below. 

1. The collection of vowels in English alphabets. This set contains five 

elements, namely, a, e, i, o, u. 

2. A group of ―Singers with ages between 18 years and 25 years‖ is a set, 

because the range of ages of the singer is given and so it can easily be 

decided that which singer is to be included and which is to be excluded. 

Hence, the objects are well-defined. 
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3. A collection of ―Red flowers‖ is a set, because every red flowers will 

be included in this set i.e., the objects of the set are well-defined. 

4. The collection of past presidents of the United States union is a set. 

5. A group of ―Young dancers‖ is not a set, as the range of the ages of 

young dancers is not given and so it can‘t be decided that which dancer is 

to be considered young i.e., the objects are not well-defined. 

6. The collection of cricketers in the world who were out for 99 runs in a 

test match is a set. 

2.4AXIOMATIC SET THEORY 

Elementary set theory can be studied informally and intuitively, and so 

can be taught in primary schools using Venn diagrams. The intuitive 

approach tacitly assumes that a set may be formed from the class of all 

objects satisfying any particular defining condition. This assumption 

gives rise to paradoxes, the simplest and best known of which 

are Russell's paradox and the Burali-Forti paradox. Axiomatic set theory 

was originally devised to rid set theory of such paradoxes.  

The most widely studied systems of axiomatic set theory imply that all 

sets form a cumulative hierarchy. Such systems come in two flavors, 

those whose ontology consists of: 

2.4.1  Sets Alone.  

This includes the most common axiomatic set theory, Zermelo–

Fraenkel set theory (ZFC), which includes the axiom of choice. 

Fragments of ZFC include: 

o Zermelo set theory, which replaces the axiom schema of 

replacement with that of separation; 

o General set theory, a small fragment of Zermelo set 

theory sufficient for the Peano axioms and finite sets; 

o Kripke–Platek set theory, which omits the axioms of 

infinity, powerset, and choice, and weakens the axiom schemata 

of separation and replacement. 
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2.4.2 Sets and Proper Classes 

These include Von Neumann–Bernays–Gödel set theory, which has the 

same strength as ZFC for theorems about sets alone, and Morse–Kelley 

set theory and Tarski–Grothendieck set theory, both of which are 

stronger than ZFC. 

The above systems can be modified to allow urelements, objects that can 

be members of sets but that are not themselves sets and do not have any 

members. 

The systems of New Foundations NFU (allowing urelements) 

and NF (lacking them) are not based on a cumulative hierarchy. NF and 

NFU include a "set of everything, " relative to which every set has a 

complement. In these systems urelements matter, because NF, but not 

NFU, produces sets for which the axiom of choice does not hold. 

Systems of constructive set theory, such as CST, CZF, and IZF, embed 

their set axioms in intuitionist instead of classical logic. Yet other 

systems accept classical logic but feature a nonstandard membership 

relation. These include rough set theory and fuzzy set theory, in which 

the value of an atomic formula embodying the membership relation is 

not simply True or False. The Boolean-valued models of ZFC are a 

related subject. 

2.5 APPLICATION 

Many mathematical concepts can be defined precisely using only set 

theoretic concepts. For example, mathematical structures as diverse 

as graphs, manifolds, rings, and vector spaces can all be defined as sets 

satisfying various (axiomatic) properties. Equivalence and order 

relations are ubiquitous in mathematics, and the theory of 

mathematical relations can be described in set theory. 

Set theory is also a promising foundational system for much of 

mathematics. Since the publication of the first volume of Principia 

Mathematica, it has been claimed that most or even all mathematical 

theorems can be derived using an aptly designed set of axioms for set 

theory, augmented with many definitions, using first or second-order 
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logic. For example, properties of the natural and real numbers can be 

derived within set theory, as each number system can be identified with a 

set of equivalence classes under a suitable equivalence relation whose 

field is some infinite set. 

Set theory as a foundation for mathematical analysis, topology, abstract 

algebra, and discrete mathematics is likewise uncontroversial; 

mathematicians accept that (in principle) theorems in these areas can be 

derived from the relevant definitions and the axioms of set theory. Few 

full derivations of complex mathematical theorems from set theory have 

been formally verified, however, because such formal derivations are 

often much longer than the natural language proofs mathematicians 

commonly present. One verification project, Metamath, includes human-

written, computer-verified derivations of more than 12,000 theorems 

starting from ZFC set theory, first-order logic and propositional logic. 

2.6 AREAS OF STUDY 

 Set theory is a major area of research in mathematics, with many 

interrelated subfields. 

2.6.1 Combinatorial Set Theory 

Combinatorial set theory concerns extensions of finite combinatorics to 

infinite sets. This includes the study of cardinal arithmetic and the study 

of extensions of Ramsey's theoremsuch as the Erdős–Rado theorem. 

2.6.2 Descriptive Set Theory 

Descriptive set theory is the study of subsets of the real line and, more 

generally, subsets of Polish spaces. It begins with the study of point 

classes in the Borel hierarchy and extends to the study of more complex 

hierarchies such as the projective hierarchy and the Wadge hierarchy. 

Many properties of Borel sets can be established in ZFC, but proving 

these properties hold for more complicated sets requires additional 

axioms related to determinacy and large cardinals. 

The field of effective descriptive set theory is between set theory 

and recursion theory. It includes the study of lightface point classes, and 

is closely related to hyper arithmetical theory. In many cases, results of 

https://en.wikipedia.org/wiki/Second-order_logic
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Equivalence_class
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Discrete_mathematics
https://en.wikipedia.org/wiki/Metamath
https://en.wikipedia.org/wiki/ZFC
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Propositional_logic
https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Cardinal_arithmetic
https://en.wikipedia.org/wiki/Ramsey%27s_theorem
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Rado_theorem
https://en.wikipedia.org/wiki/Real_line
https://en.wikipedia.org/wiki/Polish_space
https://en.wikipedia.org/wiki/Pointclass
https://en.wikipedia.org/wiki/Pointclass
https://en.wikipedia.org/wiki/Borel_hierarchy
https://en.wikipedia.org/wiki/Projective_hierarchy
https://en.wikipedia.org/wiki/Wadge_hierarchy
https://en.wikipedia.org/wiki/Borel_set
https://en.wikipedia.org/wiki/Effective_descriptive_set_theory
https://en.wikipedia.org/wiki/Recursion_theory
https://en.wikipedia.org/wiki/Lightface_pointclass
https://en.wikipedia.org/wiki/Hyperarithmetical_theory


Notes 

44 

classical descriptive set theory have effective versions; in some cases, 

new results are obtained by proving the effective version first and then 

extending ("relativizing") it to make it more broadly applicable. 

A recent area of research concerns Borel equivalence relations and more 

complicated definable equivalence relations. This has important 

applications to the study of invariants in many fields of mathematics. 

Descriptive set theory (DST) is the study of certain classes of "well-

behaved" subsets of the real line and other Polish spaces. As well as 

being one of the primary areas of research in set theory, it has 

applications to other areas of mathematics such as functional 

analysis, ergodic theory, the study of operator algebras and group 

actions, and mathematical logic. Descriptive set theory begins with the 

study of Polish spaces and their Borel sets. 

A Polish space is a second-countable topological space that 

is metrizable with a complete metric. Equivalently, it is a 

complete separable metric space whose metric has been "forgotten". 

Examples include the real line R, the Baire space N, the Cantor space  C, 

and the Hilbert cube I  . The class of Polish spaces has several 

universality properties, which show that there is no loss of generality in 

considering Polish spaces of certain restricted forms. 

 Every Polish space is homeomorphic to a Gδ subspace of the Hilbert 

cube, and every Gδ subspace of the Hilbert cube is Polish. 

 Every Polish space is obtained as a continuous image of Baire space; 

in fact every Polish space is the image of a continuous bijection 

defined on a closed subset of Baire space. Similarly, every compact 

Polish space is a continuous image of Cantor space. 

Because of these universality properties, and because the Baire 

space  has the convenient property that it is homeomorphic to , many 

results in descriptive set theory are proved in the context of Baire space 

alone. 

The class of Borel sets of a topological space X consists of all sets in the 

smallest ζ-algebra containing the open sets of X. This means that the 

Borel sets of X are the smallest collection of sets such that: 
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 Every open subset of X is a Borel set. 

 If A is a Borel set, so is . That is, the class of Borel sets are closed 

under complementation. 

 If An is a Borel set for each natural number n, then the union  is a 

Borel set. That is, the Borel sets are closed under countable unions. 

A fundamental result shows that any two uncountable Polish 

spaces X and Y are Borel isomorphic: there is a bijection 

from X to Y such that the preimage of any Borel set is Borel, and the 

image of any Borel set is Borel. This gives additional justification to the 

practice of restricting attention to Baire space and Cantor space, since 

these and any other Polish spaces are all isomorphic at the level of Borel 

sets. 

Check your Progress:  

Q. 1 Define Borel sets? 

……………………………………………………………………………

………………………………………………………………… 

Q .2 Define descriptive sets theory. 

……………………………………………………………………………

…………………………………………………………………………… 

2.6.3 Fuzzy Set Theory 

In set theory as Cantor defined and Zermelo and Fraenkel axiomatized, 

an object is either a member of a set or not. In fuzzy set theory this 

condition was relaxed by Lotfi A. Zadehso an object has a degree of 

membership in a set, a number between 0 and 1. For example, the degree 

of membership of a person in the set of "tall people" is more flexible than 

a simple yes or no answer and can be a real number such as 0.75. 

Fuzzy sets (aka uncertain sets) are somewhat 

like sets whose elements have degrees of membership. Fuzzy sets were 

introduced independently by Lotfi A. Zadeh. and Dieter Klaua. in 1965 

as an extension of the classical notion of set. At the same time, Salii 

(1965) defined a more general kind of structure called an L-relation, 

which he studied in an abstract algebraic context. Fuzzy relations, which 

are used now in different areas, such as linguistics (De Cock, Bodenhofer 
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& Kerre 2000), decision-making (Kuzmin 1982), and clustering (Bezdek 

1978), are special cases of L-relations when L is the unit interval [0, 1]. 

In classical set theory, the membership of elements in a set is assessed in 

binary terms according to a bivalent condition — an element either 

belongs or does not belong to the set. By contrast, fuzzy set theory 

permits the gradual assessment of the membership of elements in a set; 

this is described with the aid of a membership function valued in the real 

unit interval [0, 1]. Fuzzy sets generalize classical sets, since 

the indicator functions (aka characteristic functions) of classical sets are 

special cases of the membership functions of fuzzy sets, if the latter only 

take values 0 or 1.
[3]

 In fuzzy set theory, classical bivalent sets are 

usually called crisp sets. The fuzzy set theory can be used in a wide 

range of domains in which information is incomplete or imprecise, such 

as bioinformatics. 

2.6.4 Inner Model Theory  

An inner model of Zermelo–Fraenkel set theory (ZF) is a 

transitive class that includes all the ordinals and satisfies all the axioms 

of ZF. The canonical example is the constructible universe L developed 

by Gödel. One reason that the study of inner models is of interest is that 

it can be used to prove consistency results. For example, it can be shown 

that regardless of whether a model V of ZF satisfies the continuum 

hypothesis or the axiom of choice, the inner model L constructed inside 

the original model will satisfy both the generalized continuum hypothesis 

and the axiom of choice. Thus the assumption that ZF is consistent (has 

at least one model) implies that ZF together with these two principles is 

consistent. 

The study of inner models is common in the study 

of determinacy and large cardinals, especially when considering axioms 

such as the axiom of determinacy that contradict the axiom of choice. 

Even if a fixed model of set theory satisfies the axiom of choice, it is 

possible for an inner model to fail to satisfy the axiom of choice. For 

example, the existence of sufficiently large cardinals implies that there is 

an inner model satisfying the axiom of determinacy (and thus not 

satisfying the axiom of choice).
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Determinacy is a subfield of set theory, a branch of mathematics, that 

examines the conditions under which one or the other player of a game 

has a winning strategy, and the consequences of the existence of such 

strategies. Alternatively and similarly, "determinacy" is the property of a 

game whereby such a strategy exists. 

The games studied in set theory are usually Gale–Stewart games – two-

player games of perfect information in which the players make an infinite 

sequence of moves and there are no draws. The field of game 

theory studies more general kinds of games, including games with draws 

such as tic-tac-toe, chess, or infinite chess, or games with imperfect 

information such as poker. 

Examples:-  

 The class of all sets is an inner model containing all other inner 

models. 

 The first non-trivial example of an inner model was the constructible 

universe L developed by Kurt Gödel. Every model M of ZF has an 

inner model L
M

 satisfying the axiom of constructability, and this will 

be the smallest inner model of M containing all the ordinals of M. 

Regardless of the properties of the original model, L
M

 will satisfy 

the generalized continuum hypothesis and combinatorial axioms 

such as the diamond principle ◊. 

 The sets that are hereditarily ordinal definable form an inner model 

 The sets that are hereditarily definable over a countable sequence of 

ordinals form an inner model, used in Solovay's theorem. 

2.6.5 Large Cardinals 

A large cardinal is a cardinal number with an extra property. Many such 

properties are studied, including inaccessible cardinals, measurable 

cardinals, and many more. These properties typically imply the cardinal 

number must be very large, with the existence of a cardinal with the 

specified property unprovable in Zermelo-Fraenkel set theory 

A large cardinal property is a certain kind of property 

of transfinite cardinal numbers. Cardinals with such properties are, as the 

name suggests, generally very "large" (for example, bigger than the least 
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α such that α=ωα). The proposition that such cardinals exist cannot be 

proved in the most common axiomatizationof set theory, namely ZFC, 

and such propositions can be viewed as ways of measuring how "much", 

beyond ZFC, one needs to assume to be able to prove certain desired 

results. In other words, they can be seen, in Dana Scott's phrase, as 

quantifying the fact "that if you want more you have to assume more".
[1]

 

There is a rough convention that results provable from ZFC alone may be 

stated without hypotheses, but that if the proof requires other 

assumptions (such as the existence of large cardinals), these should be 

stated. Whether this is simply a linguistic convention, or something 

more, is a controversial point among distinct philosophical schools 

(see Motivations and epistemic status below). 

A large cardinal axiom is an axiom stating that there exists a cardinal 

(or perhaps many of them) with some specified large cardinal property. 

Most working set theorists believe that the large cardinal axioms that are 

currently being considered are consistent with ZFC. These axioms are 

strong enough to imply the consistency of ZFC. This has the 

consequence (via Gödel's second incompleteness theorem) that their 

consistency with ZFC cannot be proven in ZFC (assuming ZFC is 

consistent). 

There is no generally agreed precise definition of what a large cardinal 

property is, though essentially everyone agrees that those in the list of 

large cardinal properties are large cardinal properties. 

2.6.6 Determinacy  

Determinacy refers to the fact that, under appropriate assumptions, 

certain two-player games of perfect information are determined from the 

start in the sense that one player must have a winning strategy. The 

existence of these strategies has important consequences in descriptive 

set theory, as the assumption that a broader class of games is determined 

often implies that a broader class of sets will have a topological property. 

The axiom of determinacy (AD) is an important object of study; although 

incompatible with the axiom of choice, AD implies that all subsets of the 

real line are well behaved (in particular, measurable and with the perfect 
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set property). AD can be used to prove that the Wadge degreeshave an 

elegant structure. 

Determinacy is a subfield of set theory, a branch of mathematics, that 

examines the conditions under which one or the other player of a game 

has a winning strategy, and the consequences of the existence of such 

strategies. Alternatively and similarly, "determinacy" is the property of a 

game whereby such a strategy exists. 

The games studied in set theory are usually Gale–Stewart games – two-

player games of perfect information in which the players make an infinite 

sequence of moves and there are no draws. The field of game 

theory studies more general kinds of games, including games with draws 

such as tic-tac-toe, chess, or infinite chess, or games with imperfect 

information such as poker. 

The first sort of game we shall consider is the two-player game of perfect 

information of length ω, in which the players play natural numbers. 

These games are often called Gale–Stewart games.
[1]

 

In this sort of game there are two players, often named I and II, who take 

turns playing natural numbers, with I going first. They play "forever"; 

that is, their plays are indexed by the natural numbers. When they're 

finished, a predetermined condition decides which player won. This 

condition need not be specified by any definable rule; it may simply be 

an arbitrary (infinitely long) lookup table saying who has won given a 

particular sequence of plays. 

More formally, consider a subset A of Baire space; recall that the latter 

consists of all ω-sequences of natural numbers. Then in the game 

GA, I plays a natural number a0, then IIplays a1, then I plays a2, and so 

on. Then I wins the game if and only if and otherwise II wins. A is then 

called the payoff set of GA. 

It is assumed that each player can see all moves preceding each of his 

moves, and also knows the winning condition. 

All finite games of perfect information in which draws do not occur are 

determined. 
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Real-world games of perfect information, such as tic-tac-toe, chess, 

or infinite chess, are always finished in a finite number of moves (in 

chess-games this assumes the 50-move rule is applied). If such a game is 

modified so that a particular player wins under any condition where the 

game would have been called a draw, then it is always determined.
[3]

 The 

condition that the game is always over (i.e. all possible extensions of the 

finite position result in a win for the same player) in a finite number of 

moves corresponds to the topological condition that the set A giving the 

winning condition for GA is clopen in the topology of Baire space. 

For example, modifying the rules of chess to make drawn games a win 

for Black makes chess a determined game.
[4]

 As it happens, chess has a 

finite number of positions and a draw-by-repetition rules, so with these 

modified rules, if play continues long enough without White having won, 

then Black can eventually force a win (due to the modification of draw = 

win for black). 

The proof that such games are determined is rather simple: 

Player I simply plays not to lose; that is, he plays to make sure that 

player II does not have a winning strategy after I's move. If 

player I cannot do this, then it means player II had a winning strategy 

from the beginning. On the other hand, if player I can play in this way, 

then he must win, because the game will be over after some finite 

number of moves, and he can't have lost at that point. 

This proof does not actually require that the game always be over in a 

finite number of moves, only that it be over in a finite number of moves 

whenever II wins. That condition, topologically, is that the 

set A is closed. This fact—that all closed games are determined—is 

called the Gale–Stewart theorem. Note that by symmetry, all open games 

are determined as well. (A game is open if I can win only by winning in 

a finite number of moves.) 

2.6.7 Set-Theoretic Topology 

Set-theoretic topology studies questions of general topology that are set-

theoretic in nature or that require advanced methods of set theory for 

their solution. Many of these theorems are independent of ZFC, requiring 

stronger axioms for their proof. A famous problem is the normal Moore 
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space question, a question in general topology that was the subject of 

intense research. The answer to the normal Moore space question was 

eventually proved to be independent of ZFC. 

Example 1. In a competition, a school awarded medals in different 

categories. 36 medals in dance, 12 medals in dramatics and 18 

medals in music. If these medals went to a total of 45 persons and 

only 4 persons got medals in all the three categories, how many 

received medals in exactly two of these categories? 

Solution:  

Let A = set of persons who got medals in dance.  

B = set of persons who got medals in dramatics.  

C = set of persons who got medals in music.  

Given,  

n(A) = 36 ,n(B) = 12,    n(C) = 18  

n(A ∪ B ∪ C) = 45,n(A ∩ B ∩ C) = 4  

We know that number of elements belonging to exactly two of the three 

sets A, B, C  

= n(A ∩ B) + n(B ∩ C) + n(A ∩ C) - 3n(A ∩ B ∩ C)  

= n(A ∩ B) + n(B ∩ C) + n(A ∩ C) - 3 × 4       ……..(i)  

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(A ∩ C) + 

n(A ∩ B ∩ C)  

Therefore, n(A ∩ B) + n(B ∩ C) + n(A ∩ C) = n(A) + n(B) + n(C) + n(A 

∩ B ∩ C) - n(A ∪ B ∪ C)  

From (i) required number  

= n(A) + n(B) + n(C) + n(A ∩ B ∩ C) - n(A ∪ B ∪ C) - 12  

= 36 + 12 + 18 + 4 - 45 - 12  

= 70 - 57  

= 13  

Example 2. Each student in a class of 40 plays at least one indoor 

game chess, carrom and scrabble. 18 play chess, 20 play scrabble 

and 27 play carrom. 7 play chess and scrabble, 12 play scrabble and 

carrom and 4 play chess, carrom and scrabble. Find the number of 

students who play (i) chess and carrom. (ii) chess, carrom but not 

scrabble. 

https://en.wikipedia.org/wiki/Moore_space_(topology)
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Solution:  

Let A be the set of students who play chess  

B be the set of students who play scrabble  

C be the set of students who play carrom  

Therefore, We are given n(A ∪ B ∪ C) = 40,  

n(A) = 18,         n(B) = 20         n(C) = 27,  

n(A ∩ B) = 7,     n(C ∩ B) = 12    n(A ∩ B ∩ C) = 4  

We have  

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + 

n(A ∩ B ∩ C)  

Therefore, 40 = 18 + 20 + 27 - 7 - 12 - n(C ∩ A) + 4  

40 = 69 – 19 - n(C ∩ A)  

40 = 50 - n(C ∩ A) n(C ∩ A) = 50 - 40  

n(C ∩ A) = 10  

Therefore, Number of students who play chess and carrom are 10.  

Also, number of students who play chess, carrom and not scrabble.  

= n(C ∩ A) - n(A ∩ B ∩ C)  

= 10 – 4  

= 6 

Therefore, we learned how to solve different types of word problems on 

sets without using Venn diagram. 

2.7 LETS SUM UP   

From set theory's inception, some mathematicians have objected to it as 

a foundation for mathematics. The most common objection to set theory, 

one Kronecker voiced in set theory's earliest years, starts from 

the constructivist view that mathematics is loosely related to 

computation. If this view is granted, then the treatment of infinite sets, 

both in naive and in axiomatic set theory, introduces into mathematics 

methods and objects that are not computable even in principle. The 

feasibility of constructivism as a substitute foundation for mathematics 

was greatly increased by Errett Bishop's influential book Foundations of 

Constructive Analysis 
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A different objection put forth by Henri Poincaré is that defining sets 

using the axiom schemas of specification and replacement, as well as the 

axiom of power set, introduces impredicativity, a type of circularity, into 

the definitions of mathematical objects. The scope of predicatively 

founded mathematics, while less than that of the commonly accepted 

Zermelo-Fraenkel theory, is much greater than that of constructive 

mathematics, to the point that Solomon Feferman has said that "all of 

scientifically applicable analysis can be developed [using predicative 

methods]". 

Ludwig Wittgenstein condemned set theory. He wrote that "set theory is 

wrong", since it builds on the "nonsense" of fictitious symbolism, has 

"pernicious idioms", and that it is nonsensical to talk about "all 

numbers".Wittgenstein's views about the foundations of mathematics 

were later criticised by Georg Kreisel and Paul Bernays, and investigated 

by Crispin Wright, among others. 

Category theorists have proposed topos theory as an alternative to 

traditional axiomatic set theory. Topos theory can interpret various 

alternatives to that theory, such as constructivism, finite set theory, 

and computable set theory. Topoi also give a natural setting for forcing 

and discussions of the independence of choice from ZF, as well as 

providing the framework for pointless topology and Stone spaces. 

An active area of research is the univalent foundations and related to 

it homotopy type theory. Within homotopy type theory, a set may be 

regarded as a homotopy 0-type, with universal properties of sets arising 

from the inductive and recursive properties of higher inductive types. 

Principles such as the axiom of choice and the law of the excluded 

middle can be formulated in a manner corresponding to the classical 

formulation in set theory or perhaps in a spectrum of distinct ways 

unique to type theory. Some of these principles may be proven to be a 

consequence of other principles. The variety of formulations of these 

axiomatic principles allows for a detailed analysis of the formulations 

required in order to derive various mathematical results. 
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2.9 QUESTION FOR REVIEW 

Q. 1 what is fuzzy sets? 

Q. 2 Define basic sets in real analysis? 

Q. 3 Define alone sets in real analysis? 

Q. 4 what is Venn‘s Diagram define with example.  

Q. 5 Define the determinacy? 

Q. 6 What is descriptive sets theory? 
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1. Hint refer section 2.6 
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UNIT - 3:EXTENDED REAL 

NUMBERS  

STRUCTURE 

3.1 Need of real numbers 

3. 2 Different perspectives 

      3. 2.1 An axiomatic approach 

              3.2.2 A constructive approach 

              3.2.3 Limit 

3.3 Measure and Integration 

              3.3.1 Order and Topological Properties 

     3.3.2 Arithmetic Properties 

             3.3.3 Algebraic Properties 

3.4 Extensions of the Real Line  

              3.4.1 Geometry 

              3.4.2 Arithmetic Operations 

3.5 Real Projective Plane  

          3.5.1 Roman Surface 

          3.5.2 Point, Lines, and Plane 

         3.5.3 Homogeneous Coordinates  

3.6 Lets Sum up 

3.7 Keyword 

3.8 Question for review 

3.9 Suggestion Reading & References  

3.10 Answers to check your progress 

3.1 NEED OF REAL NUMBERS 

This is a good juncture to justify the subject of real analysis, which 

essentially reduces to justifying the necessity of studying Ɽ. So, what is 

missing? Why do we need anything beyond the  rational ? 

The first sign of trouble is square roots. Famously,  √  is not rational – in 

other words, there is no rational number which squares to 2 this fact has 

a curious consequence – consider the following function: 
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Clearly this function has a dramatic jump in it around the rational, where 

it suddenly changes from being equal to zero and starts being equal to 

one. However, it's difficult (or even impossible) to pin down exactly 

where this jump happens. Any specific rational number is safely on one 

side or the other, and, indeed, in the standard Topology on Q, this 

function is continuous .It is this flaw which the real numbers are 

designed to repair. We will define the real numbers ℝ so that no matter 

how clever we try to be, if a function has a 'jump' in the way that F does, 

then we will always be able to find a specific number at which it jumps. 

The following sections describe the properties of ℝ which make this 

possible. 

3.2DIFFERENT PERSPECTIVES 

In order to prove anything about the real numbers, we need to know what 

their properties are. There are two different approaches to describing 

these properties – axiomatic and constructive 

3.2.1 An Axiomatic Approach 

When we take an axiomatic approach, we simply make a series of 

assertions regarding ℝ , and assume that they hold. 

The assertions that we make are called axioms – in a mathematical 

context this term means roughly 'basic assumption'. 

The advantage of this approach is that it is then clear exactly what has 

been assumed, before proceeding to deduce results which rely only on 

those assumptions. 

The disadvantage of this approach is that it might not be immediately 

clear that any object satisfying the properties we desire even exists! 

3.2.2 A Constructive Approach 

With a constructive approach, we are not happy simply to assume exactly 

what we want, but rather we try to construct  ℝ from something simpler, 

https://en.wikibooks.org/wiki/Topology/Topological_Spaces
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and then prove that it has the properties we want. In this way, what could 

have been axioms become theorems. There are several different ways to 

do this, starting from ℚ and using some method to 'fill up the gaps 

between the rationals'. 

All of these methods are fairly complex and will be put off until the next 

section. 

So, what are these axioms which we will need? The short version is to 

say that  is a complete ordered field. This is in fact saying a great many 

things: 

 That  ℝ is a totally ordered field. 

 That  ℝ is complete in this ordering (Note that the meaning of 

completeness here is not quite the same as the common meaning in 

the study of partially ordered sets). 

 That the algebraic operations (addition and multiplication) described 

by the field axioms interact with the ordering in the expected manner. 

In more detail, we assert the following: 

 ℝ is a field For this, we require binary operations addition (denoted 

as + )and multiplication (denoted as X)defined on ℝ and distinct 

elements defined as 0 and 1 are satisfying 
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This is amongst the longest list of axioms in any region of mathematics, 

but if you examine each in turn, you will find that they all state things 

which you have probably taken for granted as 'the way numbers behave' 

without a second thought. 

These axioms are so exacting that there is a sense in which they specify 

the real numbers precisely. In other words ℝ is the only complete 

ordered field. 

Affinely Extended Real number system is obtained from the real 

number system ℝ by adding two elements: + ∞ and − ∞ (read 

as positive infinity and negative infinity respectively). These new 

elements are not real numbers. It is useful in describing various limiting 

behaviors in calculus and mathematical analysis, especially in the theory 

of measure and integration. The affinely extended real number system is 

denoted  or [−∞, +∞] or ℝ ∪ {−∞, +∞}. 

When the meaning is clear from context, the symbol +∞ is often written 

simply as ∞. 

3.2.3 Limits 

We often wish to describe the behaviour of a function    , as either the 

argument or the function value    ,  gets "very big" in some sense. For 

example, consider the function. The graph of this function      =     

has a horizontal asymptote at y = 0. Geometrically, as we move farther 

and farther to the right along the x-axis, the value of  
 

  
 approaches 0. 

This limiting behaviour is similar to the limit of a function at a real 

number, except that there is no real number to which approaches. 

By adjoining the elements +  and - , to R we allow a formulation of a 

"limit at infinity" with topological properties similar to those for to ℝ 

 To make things completely formal, the Cauchy sequences 

definition of ℝ allows +  us to define as the set of all sequences of 

rationals which, for any K > 0, from some point on exceed K. We can 

define -  similarly.  

3.3 MEASURE AND INTEGRATION 
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In measure theory, it is often useful to allow sets that have infinite 

measure and integrals whose value may be infinite. 

Such measures arise naturally out of calculus. For example, in assigning 

a measure to ℝ that agrees with the usual length of intervals, this 

measure must be larger than any finite real number. Also, when 

considering improper integrals, such as ∫
  

 

 

 
  

the value "infinity" arises. Finally, it is often useful to consider the limit 

of a sequence of functions, such as. 

       {
                     

   
 

 
      

 

Without allowing functions to take on infinite values, such essential 

results as the monotone convergence theorem and the dominated 

convergence theorem would not make sense. 

3.3.1 Order And Topological Properties 

The affinely extended real number system turns into a totally ordered 

set by defining -∞ ≤ α  + ∞ for all α . This order has the desirable 

property that every subset has a supremum and an infimum: it is 

a complete lattice. 

This induces the order topology on ℝ. In this topology, a set U is 

a neighbourhood of +∞ if and only if it contains a set {x : x > a } for 

some real number α, and analogously for the neighbourhoods-∞of R.  is 

a compact Hausdorf space homeomorphic to the unit interval [0,1]. Thus 

the topology is metrizable, corresponding (for a given homeomorphism) 

to the ordinary metric on this interval. There is no metric that is an 

extension of the ordinary metric on ℝ. 

With this topology +∞ the - ∞specially defined limits for  tending 

to  and , and the specially defined concepts of limits equal to  and , 

reduce to the general topological definitions of limits. 

3.3.2 Arithmetic Operations 

The arithmetic operations of  ℝ can be partially extended ℝ as follows:  a 

+ ∞ = + ∞ + a = + ∞ ,  a ≠ - ∞ 
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a  -  ∞ = - ∞ + a = - ∞ ,    a ≠ +  ∞ 

a.(±∞) =  ± ∞.a  = ± ∞,   a € (0, +∞) 

a.(±∞) =  ± ∞.a  = ± ∞,   a € [- ∞, 0) 

 

  
 = 0 ,    a € R 

  

 
           ∈        

  

 
           ∈         

For exponentiation, see Exponentiation Limits of powers. Here, "a +∞" 

means both "a + (+∞)" and "a – (-∞)", while "a -∞" means both "a – 

(+∞)" and "a + (-∞)". 

The expressions ∞ -∞ and  (called indeterminate forms) are usually 

left undefined. These rules are modelled on the laws for infinite limits. 

However, in the context of probability or measure theory,  is often 

defined as .The expression  
 

 
  is not defined either +∞ as  or -∞ , because 

although it is true that whenever f (x) → 0 for a continuous 

function f(x) it must be the case  that 1/ f(x)  is eventually contained in 

every neighbourhood of the set{- ∞, + ∞} , it is not true that 1/ F(x) must 

tend to + ∞ or - ∞ one of these points. An example is  which is of the 

form  but does not tend to either  or  when . For instance,  but  does not 

exist because  but . (The modulus , nevertheless, does approach .) 

3.3.3 Algebraic Properties 

With these definitions R  is not even a semigroup, let alone a group, 

a ring or a field, like R is one. However, it still has several convenient 

properties: 

 a + (b + c) and ( a + b) + c   are either equal or both undefined. 

  a  + b and b + a  are either equal or both undefined. 

 a. (b. c ) and (a. b ) . c  are either equal or both undefined. 

 a. b  and b. a  are either equal or both undefined 

 a. (b + c) and a .b + a. c  are equal if both are defined. 

 a ≤ b If a + c   and b + c  if both  and are defined, then a + c ≤  b + 

c   . 
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 If a ≤ b and c > 0 and if both a .c   and b. c   are defined, then a. c ≤ b. c . 

In general, all laws of arithmetic are valid in R  as long as all occurring 

expressions are defined. 

Miscellaneous 

Several functions can be continuously extended to ℝ ̅̅̅   by taking limits. 

For instance, one defines the extrermal points of the following functions 

as follows: 

 

Some singularities may additionally be removed. For example, the 

function 
 

    can be continuously extended to ℝ ̅̅̅   (under some definitions 

of continuity) by setting the value to + ∞  for x =0  , and  0 for x = + ∞ 

and x = -∞  . The function   1/x cannot be continuously extended because 

the function approaches -∞  as  approaches 0 from below, and + ∞ 

as  approaches 0  from above. 

Compare the projectively extended real line, which does not distinguish 

between   +∞ and -∞  . As a result, on one hand a function may have 

limit ∞ on the projectively extended real line, while in the affinely 

extended real number system only the absolute value of the function has 

a limit, e.g. in the case of the function   1/x at x= 0  . On the other hand                

               and                 

correspond on the projectively extended real line to only a limit from the 

right and one from the left, respectively, with the full limit only existing 

when the two are equal. Thus    and arctan(x)  cannot be made 

continuous at x=∞ on the projectively extended real line. 

In real analysis, the projectively extended real line (also called the one-

point compactification of the real line), is the extension of the number 

line by a point denoted ∞. It is thus the set ℝ ∪ { }  (where ℝ is the set 

of the real numbers) with the standard arithmetic operations extended 

where possible, sometimes denoted by ℝ̂ .The added point is called 

the point at infinity, because it is considered as a neighbour of 

both ends of the real line. More precisely, the point at infinity is 
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the limit of every sequence of real numbers whose absolute values are 

increasing and unbounded. 

The projectively extended real line may be identified with the projective 

line over the reals in which three points have been assigned specific 

values (e.g. 0, 1 and ∞). The projectively extended real line must not be 

confused with the extended real number line, in which +∞ and −∞are 

distinct. 

Unlike most mathematical models of the intuitive concept of 'number', 

this structure allows division by zero: 

 

for nonzero a. In particular 1/0 = ∞, and moreover 1/∞ = 0, 

making reciprocal, 1/x, a total function in this structure. The structure, 

however, is not a field, and none of the binary arithmetic operations are 

total, as witnessed for example by 0⋅∞ being undefined despite the 

reciprocal being total. It has usable interpretations, however – for 

example, in geometry, a vertical line has infinite slope. 

3.4. EXTENSIONS OF THE REAL LINE 

The projectively extended real line extends the field of real numbers in 

the same way that the Riemann sphere extends the field of complex 

numbers, by adding a single point called conventionally  . 

In contrast, the extended real number line (also called the two-

point compactification of the real line) distinguishes between +   and - 

 .The order relation cannot be extended to ℝ̂  in a meaningful way. 

Given a number a    , there is no convincing argument to define  

a> either  or that a<  . Since   can't be compared with any of the other 

elements, there's no point in retaining this relation on ℝ̂. However, order 

on ℝ is used in definitions in ℝ̂. 

 3.4.1 Geometry 

Fundamental to the idea that ∞ is a point no different from any other is 

the way the real projective line is a homogeneous space, in 

fact homeomorphic to a circle. For example the general linear group of 
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2×2 real invertible matrices has a transitive action on it. The group 

action may be expressed by Möbius transformations, (also called linear 

fractional transformations), with the understanding that when the 

denominator of the linear fractional transformation is 0, the image is ∞. 

The detailed analysis of the action shows that for any three distinct 

points P, Q and R, there is a linear fractional transformation taking P to 

0, Q to 1, and R to ∞ that is, the group of linear fractional 

transformations is triply transitive on the real projective line. This cannot 

be extended to 4-tuples of points, because the cross-ratio is invariant. 

The terminology projective line is appropriate, because the points are in 

1-to-1 correspondence with one-dimensional linear subspaces of ℝ2 

3.4.2 Arithmetic Operations 

Motivation for arithmetic operations 

The arithmetic operations on this space are an extension of the same 

operations on reals. A motivation for the new definitions is the limits of 

functions of real number. 

Arithmetic operations that are defined 

In addition to the standard operations on the subset ℝ of ℝ̂, the following 

operations are defined for a ϵ ℝ̂, with exceptions as indicated: 

 

Arithmetic operations that are left undefined. 

The following expressions cannot be motivated by considering limits of 

real functions, and no definition of them allows the statement of the 

standard algebraic properties to be retained unchanged in form for all 

defined cases Consequently, they are left undefined: 

https://en.wikipedia.org/wiki/Invertible
https://en.wikipedia.org/wiki/Transitive_action
https://en.wikipedia.org/wiki/Group_action_(mathematics)
https://en.wikipedia.org/wiki/Group_action_(mathematics)
https://en.wikipedia.org/wiki/Transitive_action
https://en.wikipedia.org/wiki/Cross-ratio
https://en.wikipedia.org/wiki/Projective_line
https://en.wikipedia.org/wiki/Linear_subspace


Notes 

65 

 

Algebraic properties 

The following equalities mean: Either both sides are undefined, or both 

sides are defined and equal. This is true for any a,b,c ϵ ℝ 

 

The following is true whenever the right-hand side is defined, for any 

a,b,c ϵ ℝ̂ 

 

In general, all laws of arithmetic that are valid for  are ℝ also valid for ℝ̂ 

whenever all the occurring expressions are defined. 

Intervals and topology 

The concept of an interval can be extended to ℝ̂ . However, since it is an 

unordered set, the interval has a slightly different meaning. The 

definitions for closed intervals are as follows (it is assumed that a,b ϵ ℝ  

a<b ): 

 

 

[ , ] / ,

[ , ] / , { }

a b x x R a x b

a x x R a x b

   

        

[ , ] { / , } { } { / , }b a x x R b x x x R x a         

[ , ] { }

[ , ] { }

a a a
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With the exception of when the end-points are equal, the corresponding 

open and half-open intervals are defined by removing the respective 

endpoints. 

 ℝ̂ and the empty set are each also an interval, as ℝ̂is  excluding any 

single point.  

The open intervals as base define a topology on ℝ̂. Sufficient for a base 

are the finite open intervals in ℝ  and the intervals   

( , ) { / , } { } { / , }b a x x R b x x x R x a         for all 

,a b Rsuchthat a b   

 As said, the topology is homeomorphic to a circle. Thus it 

is metrizable corresponding (for a given homeomorphism) to the 

ordinary metric on this circle (either measured straight or along the 

circle). There is no metric which is an extension of the ordinary metric 

on  ℝ. 

Interval arithmetic 

Interval arithmetic extends  ℝ̂ to  from ℝ . The result of an arithmetic 

operation on intervals is always an interval, except when the intervals 

with a binary operation contain incompatible values leading to an 

undefined result. In particular, we have, for every a,b ϵ ℝ̂ : 

 

Irrespective of whether either interval includes 0 and   . 

Calculus 

The tools of calculus can be used to analyse functions of ℝ̂ . The 

definitions are motivated by the topology of this space. 

Neighbourhoods 

Let  ,x R A R   

 A is a neighbourhood of x, if and only if A contains an open 

interval B and  x B . 

 A is a right-sided neighbourhood of x, if and only if there 

is  R y > xsuch thatAcontains[ , )y x y . 
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 A is a left-sided neighbourhood of x, if and only if there 

is  R y < xsuch thatAcontains[ , )y y x . 

 A is a (right-sided, left-sided) punctured neighbourhood of x, if and only 

if there is  B R such that B is a (right-sided, left-sided) neighbourhood 

of x, and  \ { }A B x . 

Basic definitions of limits 

Let  ℝ
 

 ℝ
 

  ∈ ℝ
 

 

The limit of f(x) as x approaches p is L, denoted 

   
   

       

 if and only if for every neighbourhood A of L. there is a right-sided 

(left-sided) punctured neighbourhood B of  , such that  𝜖B implies 

    𝜖 .  

The one-sided limit of f(x) as x approaches p from the right (left) is L, 

denoted 

   
   

      (   
   

      ) 

if and only if for every neighbourhood A of L, there is a right-sided (left-

sided) punctured neighbourhood B of p, such that  𝜖B implies     𝜖  . 

It can be shown that    
   

       if and only if both    
    

     

       
    

      . 

Comparison with limits in ℝ  

The definitions given above can be compared with the usual definitions 

of limits of real functions. In the following statements, pLϵℝ , the first 

limit is as defined above, and the second limit is in the usual sense: 

    
   

                         
   

       

    
    

                         
    

       

    
    

                         
    

       

    
   

                         
   

|    |     

    
    

                         
    

|    |     

    
    

                         
    

|    |     

Extended definition of limits 

https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)#Punctured_neighbourhood
https://en.wikipedia.org/wiki/Limit_of_a_function
https://en.wikipedia.org/wiki/One-sided_limit


Notes 

68 

Let  ⊆ ℝ
 

 Then   is a limit point of   if every neighbourhood of   

includes a point 𝒴𝜖   such that y    

Let  ℝ
 

 ℝ
 

  ⊆ ℝ̂  𝜖ℝ̂  𝜖ℝ̂    a limit point of  . The of      as     

approaches   through   is  , if and only if for every neighbourhood B of 

L, there is a puntured neighbourhood C of  , such that   𝜖     implies 

      . 

This corresponds to the regular topological definition of continuity, 

applied to the subspace topology on  ∪ { }. And the restriction of   to 

 ∪ { } 

Continuity 

Let 

  ℝ
 

 ℝ
 

  ∈ ℝ
 

  

  is continuous at   if and only, if is defined at   and 

   
   

          

Let 

  ℝ
 

 ℝ
 

  ⊆ ℝ
 

  

  is continuous in   if and only if for every p 𝜖  .   is defined at   and 

the limit  (x) as x approaches   through   is     . 

An interesting feature is that every rational function P(x)/Q(x), where 

P(x) and Q(x) have no common factor is continuous in ℝ
 

 Also. If tan is 

extended so that  

   (
 

 
   )    for n 𝜖 ℤ, 

then tan is continuous in ℝ. However, many elementary functions, such 

as trigonometric and exponential functions are discontinuous at ∞ for 

example, sin is continuous in ℝ but discontinues at ∞. 

Thus 1/x is continuous on ℝ
 

 but not on the affinity extended real number 

system   ̅. Conversely, the function arctan can be extended continuously 

on  ̅, but not on ℝ
 

 

Check Your Progress 1 

Q. 1. What is the Definition of Limit ? 



Notes 

69 

………………………………………………………………….. 

…………………………………………………………………….. 

Q. 2 what is arithmetic operation in Real Analysis? 

……………………………………………………………………… 

…………………………………………………………………….. 

As a projective range 
 

When the real projective line is considered in the context of the real 

projective plane, then the consequences of Desargues' theorem are 

implicit. In particular, the construction of the projective harmonic 

conjugate relation between points is part of the structure of the real 

projective line. For instance, given any pair of points, the point at 

infinity is the projective harmonic conjugate of their midpoint. 

As projectivities preserve the harmonic relation, they form 

the automorphisms of the real projective line. The projectivities are 

described algebraically as homographies, since the real numbers form 

a ring, according to the general construction of a projective line over a 

ring. Collectively they form the group PGL(2,R). 

The projectivities which are their own inverses are called involutions. 

A hyperbolic involution has two fixed points. Two of these correspond 

to elementary, arithmetic operations on the real projective 

line: negation and reciprocation. Indeed, 0 and ∞ are fixed under 

negation, while 1 and −1 are fixed under reciprocation. 

3.5 REAL PROJECTIVE PLANE 

In mathematics, the real projective plane is an example of a compact 

non-orientable two-dimensional manifold; in other words, a one-sided 

surface. It cannot be embedded in standard three-dimensional space 

without intersecting itself. It has basic applications to geometry, since the 

common construction of the real projective plane is as the space of lines 

in R
3
 passing through the origin. 

The plane is also often described topologically, in terms of a construction 

based on the Möbius strip: if one could glue the (single) edge of the 
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Möbius strip to itself in the correct direction, one would obtain the 

projective plane. (This cannot be done in three-dimensional space 

without the surface intersecting itself.) Equivalently, gluing a disk along 

the boundary of the Möbius strip gives the projective plane. 

Topologically, it has Euler characteristic 1, hence a demigenus (non-

orientable genus, Euler genus) of 1. 

Since the Möbius strip, in turn, can be constructed from a square by 

gluing two of its sides together, the real projective plane can thus be 

represented as a unit square (that is, [0,1] × [0,1] ) with its sides 

identified by the following equivalence relations: 

(0, y) ~ (1, 1 − y)   for 0 ≤ y ≤ 1 

and 

(x, 0) ~ (1 − x, 1)   for 0 ≤ x ≤ 1, 

as in the shown in diagram below. 

 

 Examples 

Projective geometry is not necessarily concerned with curvature and the 

real projective plane may be twisted up and placed in the Euclidean plane 

or 3-space in many different ways. Some of the more important examples 

are described below. 

The projective plane cannot be embedded (that is without intersection) in 

three-dimensional Euclidean space. The proof that the projective plane 

does not embed in three-dimensional Euclidean space goes like this: 

Assuming that it does embed, it would bound a compact region in three-

dimensional Euclidean space by the generalized Jordan curve theorem. 

The outward-pointing unit normal vector field would then give 
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an orientation of the boundary manifold, but the boundary manifold 

would be the projective plane, which is not orientable. This is a 

contradiction, and so our assumption that it does embed must have been 

false. 

 The projective sphere 

Consider a sphere, and let the great circles of the sphere be "lines", and 

let pairs of antipodal points be "points". It is easy to check that this 

system obeys the axioms required of a projective plane: 

 any pair of distinct great circles meet at a pair of antipodal points; and 

 any two distinct pairs of antipodal points lie on a single great circle. 

If we identify each point on the sphere with its antipodal point, then we 

get a representation of the real projective plane in which the "points" of 

the projective plane really are points. This means that the projective 

plane is the quotient space of the sphere obtained by partitioning the 

sphere into equivalence classes under the equivalence relation ~, where  

x ~ y if y = -x. This quotient space of the sphere is homeomorphic with 

the collection of all lines passing through the origin in R
3
. 

The quotient map from the sphere onto the real projective plane is in fact 

a two sheeted (i.e. two-to-one) covering map. It follows that 

the fundamental group of the real projective plane is the cyclic group of 

order 2, i.e. integers modulo 2. One can take the loop AB from the figure 

above to be the generator. 

 The projective hemisphere 

Because the sphere covers the real projective plane twice, the plane may 

be represented as a closed hemisphere around whose rim opposite points 

are similarly identified.  

 Boy's surface – an immersion 

The projective plane can be immersed (local neighbourhoods of the 

source space do not have self-intersections) in 3-space. Boy's surface is 

an example of an immersion. 

Polyhedral examples must have at least nine faces.  
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3.5.1 Roman Surface 

 

Figure of the Roman Surface 

Steiner's Roman surface is a more degenerate map of the projective plane 

into 3-space, containing a cross-cap. 

 

A polyhedral representation is the tetrahemihexahedron, which has the 

same general form as Steiner's Roman Surface, shown here. 

 Hemi polyhedra 

Looking in the opposite direction, certain abstract regular polytopes –

 hemi-cube, hemi-dodecahedron, and hemi-icosahedron – can be 

constructed as regular figures in the projective plane; see also projective 

polyhedra. 

Planar projections 

Various planar (flat) projections or mappings of the projective plane have 

been described. In 1874 Klein described the mapping  
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Central projection of the projective hemisphere onto a plane yields the 

usual infinite projective plane, described below. 

 Cross-capped disk 

A closed surface is obtained by gluing a disk to a cross-cap. This surface 

can be represented parametrically by the following equations: 

 

where both u and v range from 0 to 2π. These equations are similar to 

those of a torus. Figure shows a closed cross-capped disk. 

 

Figure. Two views of a cross-capped disk. 

A cross-capped disk has a plane of symmetry which passes through its 

line segment of double points. In Figure 1 the cross-capped disk is seen 

from above its plane of symmetry z = 0, but it would look the same if 

seen from below. 

A cross-capped disk can be sliced open along its plane of symmetry, 

while making sure not to cut along any of its double points. The result is 

shown in Figure  

 

https://en.wikipedia.org/wiki/Disk_(mathematics)
https://en.wikipedia.org/wiki/Cross-cap
https://en.wikipedia.org/wiki/Torus
https://en.wikipedia.org/wiki/Plane_of_symmetry
https://en.wikipedia.org/wiki/File:CrossCapTwoViews.PNG
https://en.wikipedia.org/wiki/File:CrossCapSlicedOpen.PNG
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Figure. Two views of a cross-capped disk which has 

been sliced open. 

Once this exception is made, it will be seen that the sliced cross-capped 

disk is homeomorphic to a self-intersecting disk, as shown in Figure . 

 

Figure. Two alternative views of a self-intersecting 

disk. 

The self-intersecting disk is homeomorphic to an ordinary disk. The 

parametric equations of the self-intersecting disk are: 

      X(u,v)=rv cos2u, 

        Y(u,v)=rv sin2u 

        Z(u,v)=rvcosu. 

where u ranges from 0 to 2π and v ranges from 0 to 1. 

Projecting the self-intersecting disk onto the plane of symmetry (z = 0 in 

the parametrization given earlier) which passes only through the double 

points, the result is an ordinary disk which repeats itself (doubles up on 

itself). 

The plane z = 0 cuts the self-intersecting disk into a pair of disks which 

are mirror reflections of each other. The disks have centers at the origin. 

Now consider the rims of the disks (with v = 1). The points on the rim of 

the self-intersecting disk come in pairs which are reflections of each 

other with respect to the plane z = 0. 

A cross-capped disk is formed by identifying these pairs of points, 

making them equivalent to each other. This means that a point with 

https://en.wikipedia.org/wiki/Homeomorphism
https://en.wikipedia.org/wiki/Reflection_(mathematics)
https://en.wikipedia.org/wiki/Origin_(mathematics)
https://en.wikipedia.org/wiki/File:SelfIntersectingDisk.PNG
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parameters (u,1) and coordinates (rcos2u,rsin2u,rcosu) is identified with 

the point (u + π,1) whose coordinates are (rcos2u,rsin2u,-rcosu) But this 

means that pairs of opposite points on the rim of the (equivalent) 

ordinary disk are identified with each other; this is how a real projective 

plane is formed out of a disk. Therefore the surface shown in Figure 1 

(cross-cap with disk) is topologically equivalent to the real projective 

plane RP
2
. 

 Homogeneous coordinates 

The points in the plane can be represented by homogeneous coordinates. 

A point has homogeneous coordinates [x : y : z], where the coordinates 

[x : y : z] and [tx : ty : tz] are considered to represent the same point, for 

all nonzero values of t. The points with coordinates [x : y : 1] are the 

usual real plane, called the finite part of the projective plane, and points 

with coordinates [x : y : 0], called points at infinity or ideal points, 

constitute a line called the line at infinity. (The homogeneous 

coordinates [0 : 0 : 0] do not represent any point.) 

The lines in the plane can also be represented by homogeneous 

coordinates. A projective line corresponding to the plane ax + by + cz = 0 

in R
3
 has the homogeneous coordinates (a : b : c). Thus, these 

coordinates have the equivalence relation (a : b : c) = (da : db : dc) for all 

nonzero values of d. Hence a different equation of the same 

line dax + dby + dcz = 0 gives the same homogeneous coordinates. A 

point [x : y : z] lies on a line (a : b : c) if ax + by + cz = 0. Therefore, lines 

with coordinates (a : b : c) where a, b are not both 0 correspond to the 

lines in the usual real plane, because they contain points that are not at 

infinity. The line with coordinates (0 : 0 : 1) is the line at infinity, since 

the only points on it are those with z = 0. 

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Real_plane
https://en.wikipedia.org/wiki/Line_at_infinity
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3.5.2 Points, Lines, And Planes 

 

A line in P
2
 can be represented by the equation ax + by + cz = 0. If we 

treat a, b, and c as the column vector ℓ and x, y, z as the column 

vector x then the equation above can be written in matrix form as: 

x
T
ℓ = 0 or ℓ

T
x = 0. 

Using vector notation we may instead write x ⋅ ℓ = 0 or ℓ ⋅ x = 0. 

The equation k(x
T
ℓ) = 0 (which k is a non-zero scalar) sweeps out a plane 

that goes through zero in R
3
 and k(x) sweeps out a line, again going 

through zero. The plane and line are linear subspaces in R
3
, which 

always go through zero. 

 Ideal points 

 

https://en.wikipedia.org/wiki/Linear_subspace
https://en.wikipedia.org/wiki/Real_coordinate_space
https://en.wikipedia.org/wiki/File:Proj_geom1.PNG
https://en.wikipedia.org/wiki/File:Prj_geom.svg
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In P
2
 the equation of a line is ax + by + cz = 0 and this equation can 

represent a line on any plane parallel to the x, y plane by multiplying the 

equation by k. 

If z = 1 we have a normalized homogeneous coordinate. All points that 

have z = 1 create a plane. Let's pretend we are looking at that plane (from 

a position further out along the z axis and looking back towards the 

origin) and there are two parallel lines drawn on the plane. From where 

we are standing (given our visual capabilities) we can see only so much 

of the plane, which we represent as the area outlined in red in the 

diagram. If we walk away from the plane along the z axis, (still looking 

backwards towards the origin), we can see more of the plane. In our field 

of view original points have moved. We can reflect this movement by 

dividing the homogeneous coordinate by a constant. In the adjacent 

image we have divided by 2 so the z value now becomes 0.5. If we walk 

far enough away what we are looking at becomes a point in the distance. 

As we walk away we see more and more of the parallel lines. The lines 

will meet at a line at infinity (a line that goes through zero on the plane 

at z = 0). Lines on the plane when z = 0 are ideal points. The plane at z = 

0 is the line at infinity. 

The homogeneous point (0, 0, 0) is where all the real points go when 

you're looking at the plane from an infinite distance, a line on the z = 0 

plane is where parallel lines intersect. 

 Duality 

 

In the equation x
T
ℓ = 0 there are two column vectors. You can keep either 

constant and vary the other. If we keep the point x constant and vary the 

coefficients ℓ we create new lines that go through the point. If we keep 

the coefficients constant and vary the points that satisfy the equation we 

create a line. We look upon x as a point, because the axes we are using 

https://en.wikipedia.org/wiki/Column_vector
https://en.wikipedia.org/wiki/File:Projective_geometry_diagram_2.svg
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are x, y, and z. If we instead plotted the coefficients using axis 

marked a, b, c points would become lines and lines would become 

points. If you prove something with the data plotted on axis marked x, y, 

and z the same argument can be used for the data plotted on axis 

marked a, b, and c. That is duality. 

 Lines joining points and intersection of lines (using 

duality)  

The equation x
T
ℓ = 0 calculates the inner product of two column vectors. 

The inner product of two vectors is zero if the vectors are orthogonal. 

In P
2
, the line between the points x1and x2 may be represented as a 

column vector ℓ that satisfies the equations x1
T
ℓ = 0 and x2

T
ℓ = 0, or in 

other words a column vector ℓ that is orthogonal to x1 and x2. The cross 

product will find such a vector: the line joining two points has 

homogeneous coordinates given by the equation x1 × x2. The intersection 

of two lines may be found in the same way, using duality, as the cross 

product of the vectors representing the lines, ℓ1 × ℓ2. 

 Embedding into 4-dimensional space 

The projective plane embeds into 4-dimensional Euclidean space. The 

real projective plane P
2
(R) is the quotient of the two-sphere 

S
2
 = {(x, y, z) ∈ R

3
 : x

2
+y

2
+z

2
 = 1} 

by the antipodal relation (x, y, z) ~ (−x, −y, −z). Consider the 

function R
3
 → R

4
 given by (x, y, z) ↦ (xy, xz, y

2
−z

2
, 2yz). This map 

restricts to a map whose domain is S
2
 and, since each component is a 

homogeneous polynomial of even degree, it takes the same values 

in R
4
 on each of any two antipodal points on S

2
. This yields a map P

2
(R) 

→ R
4
. Moreover, this map is an embedding. Notice that this embedding 

admits a projection into R
3
 which is the Roman surface. 

 Higher non-orientable surfaces 

By gluing together projective planes successively we get non-orientable 

surfaces of higher demigenus. The gluing process consists of cutting out 

a little disk from each surface and identifying (gluing) their boundary 

circles. Gluing two projective planes creates the Klein bottle. 

https://en.wikipedia.org/wiki/Data_plot
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Orthogonal
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Quotient_space_(topology)
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The article on the fundamental polygon describes the higher non-

orientable surfaces. 

In mathematics, a projective line is, roughly speaking, the extension of a 

usual line by a point called a point at infinity. The statement and the 

proof of many theorems of geometry are simplified by the resultant 

elimination of special cases; for example, two distinct projective lines in 

a projective plane meet in exactly one point (there is no "parallel" case). 

There are many equivalent ways to formally define a projective line; one 

of the most common is to define a projective line over a field K, 

commonly denoted P
1
(K), as the set of one-dimensional subspaces of a 

two-dimensional K-vector space. This definition is a special instance of 

the general definition of a projective space. 

Homogeneous coordinates 

An arbitrary point in the projective line P
1
(K) may be represented by 

an equivalence class of homogeneous coordinates, which take the form 

of a pair 

 

of elements of K that are not both zero. Two such pairs are equivalent if 

they differ by an overall nonzero factor λ: 

 

 Line extended by a point at infinity 

The projective line may be identified with the line K extended by a point 

at infinity. More precisely, the line K may be identified with the subset 

of P
1
(K) given by 

 

This subset covers all points in P
1
(K) except one, which is called 

the point at infinity: 

 

This allows to extend the arithmetic on K to P
1
(K) by the formulas 

https://en.wikipedia.org/wiki/Fundamental_polygon
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Line_(geometry)
https://en.wikipedia.org/wiki/Projective_plane
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Translating this arithmetic in terms of homogeneous coordinates gives, 

when [0 : 0] does not occur: 

Real projective line 

The projective line over the real numbers is called the real projective 

line. It may also be thought of as the line K together with an 

idealised point at infinity ∞ ; the point connects to both ends 

of K creating a closed loop or topological circle. 

An example is obtained by projecting points in R
2
 onto the unit 

circle and then identifying diametrically opposite points. In terms 

of group theory we can take the quotient by the subgroup {1, −1}. 

Compare the extended real number line, which distinguishes ∞ and −∞. 

 Complex projective line: the Riemann sphere 

Adding a point at infinity to the complex plane results in a space that is 

topologically a sphere. Hence the complex projective line is also known 

as the Riemann sphere (or sometimes the Gauss sphere). It is in 

constant use in complex analysis, algebraic geometry and complex 

manifold theory, as the simplest example of a compact Riemann surface. 

 For a finite field 

The projective line over a finite field Fq of q elements has q + 1 points. 

In all other respects it is no different from projective lines defined over 

other types of fields. In the terms of homogeneous 

coordinates [x : y], q of these points have the form: 

[a : 1] for each a in Fq, 

and the remaining point at infinity may be represented as [1 : 0]. 

 Symmetry group 

Quite generally, the group of homographies with coefficients in K acts on 

the projective line P
1
(K). This group action is transitive, so that P

1
(K) is 

a homogeneous space for the group, often written PGL2(K) to emphasise 

the projective nature of these transformations. Transitivity says that there 

exists a homography that will transform any point Q to any other point R. 

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Point_at_infinity
https://en.wikipedia.org/wiki/Unit_circle
https://en.wikipedia.org/wiki/Unit_circle
https://en.wikipedia.org/wiki/Quotient_space_(topology)
https://en.wikipedia.org/wiki/Diametrically_opposite
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Subgroup
https://en.wikipedia.org/wiki/Extended_real_number_line
https://en.wikipedia.org/wiki/Complex_plane
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Riemann_sphere
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Algebraic_geometry
https://en.wikipedia.org/wiki/Complex_manifold
https://en.wikipedia.org/wiki/Complex_manifold
https://en.wikipedia.org/wiki/Compact_Riemann_surface
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Point_at_infinity
https://en.wikipedia.org/wiki/Homography
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Group_action_(mathematics)
https://en.wikipedia.org/wiki/Group_action_(mathematics)#Types_of_actions
https://en.wikipedia.org/wiki/Homogeneous_space


Notes 

81 

The point at infinity on P
1
(K) is therefore an artifact of choice of 

coordinates: homogeneous coordinates. 

express a one-dimensional subspace by a single non-zero 

point (X, Y) lying in it, but the symmetries of the projective line can 

move the point ∞ = [1 : 0] to any other, and it is in no way distinguished. 

Much more is true, in that some transformation can take any 

given distinct points Qi for i = 1, 2, 3 to any other 3-tuple Ri of distinct 

points (triple transitivity). This amount of specification 'uses up' the three 

dimensions of PGL2(K); in other words, the group action is sharply 3-

transitive. The computational aspect of this is the cross-ratio. Indeed, a 

generalized converse is true: a sharply 3-transitive group action is always 

(isomorphic to) a generalized form of a PGL2(K) action on a projective 

line, replacing "field" by "KT-field" (generalizing the inverse to a weaker 

kind of involution), and "PGL" by a corresponding generalization of 

projective linear maps.
[1]

 

 As algebraic curve 

The projective line is a fundamental example of an algebraic curve. From 

the point of view of algebraic geometry, P
1
(K) is a non-singular curve 

of genus 0. If K is algebraically closed, it is the unique such curve 

over K, up to rational equivalence. In general a (non-singular) curve of 

genus 0 is rationally equivalent over K to a conic C, which is itself 

birationally equivalent to projective line if and only if C has a point 

defined over K; geometrically such a point P can be used as origin to 

make explicit the birational equivalence.. 

The function field of the projective line is the field K(T) of rational 

functions over K, in a single indeterminate T. The field 

automorphisms of K(T) over K are precisely the group PGL2(K) 

discussed above. 

Any function field K(V) of an algebraic variety V over K, other than a 

single point, has a subfield isomorphic with K(T). From the point of view 

of birational geometry, this means that there will be a rational 

map from V to P
1
(K), that is not constant. The image will omit only 

finitely many points of P
1
(K), and the inverse image of a typical 

point P will be of dimension dim V − 1. This is the beginning of methods 
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in algebraic geometry that are inductive on dimension. The rational maps 

play a role analogous to the meromorphic functions of complex analysis, 

and indeed in the case of compact Riemann surfaces the two concepts 

coincide. 

If V is now taken to be of dimension 1, we get a picture of a typical 

algebraic curve C presented 'over' P
1
(K). Assuming C is non-singular 

(which is no loss of generality starting with K(C)), it can be shown that 

such a rational map from C to P
1
(K) will in fact be everywhere defined. 

(That is not the case if there are singularities, since for example a double 

pointwhere a curve crosses itself may give an indeterminate result after a 

rational map.) This gives a picture in which the main geometric feature 

is ramification. 

Many curves, for example hyperelliptic curves, may be presented 

abstractly, as ramified covers of the projective line. According to 

the Riemann–Hurwitz formula, the genus then depends only on the type 

of ramification. 

A rational curve is a curve that is birationally equivalent to a projective 

line (see rational variety); its genus is 0. A rational normal curve in 

projective space P
n
 is a rational curve that lies in no proper linear 

subspace; it is known that there is only one example (up to projective 

equivalence),
[2]

 given parametrically in homogeneous coordinates as 

[1 : t : t
2
 : ... : t

n
]. 

3.6 LETS SUM UP 

Various ideas from real analysis can be generalized from the real line to 

broader or more abstract contexts. These generalizations link real 

analysis to other disciplines and sub disciplines, in many cases playing 

an important role in their development as distinct areas of mathematics. 

For instance, generalization of ideas like continuous functions and 

compactness from real analysis to metric spaces and topological 

spaces connects real analysis to the field of general topology, while 

generalization of finite-dimensional Euclidean spaces to infinite-

dimensional analogs led to the study of Banach spaces, and Hilbert 

spaces as topics of importance in functional analysis. Georg Cantor's 
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investigation of sets and sequence of real numbers, mappings between 

them, and the foundational issues of real analysis gave birth to naive set 

theory. The study of issues of convergence for sequences of functions 

eventually gave rise to Fourier analysis as a sub discipline of 

mathematical analysis. Investigation of the consequences of generalizing 

differentiability from functions of a real variable to ones of a complex 

variable gave rise to the concept of holomorphic functions and the 

inception of complex analysis as another distinct sub discipline of 

analysis. On the other hand, the generalization of integration from the 

Riemann sense to that of Lebesgue led to the formulation of the concept 

of abstract measure spaces, a fundamental concept in measure theory. 

Finally, the generalization of integration from the real line to curves and 

surfaces in higher dimensional space brought about the study of vector 

calculus, whose further generalization and formalization played an 

important role in the evolution of the concepts of differential 

forms and smooth (differentiable) manifolds in differential geometry and 

other closely related areas of geometry and topology. 
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3.8 QUESTIONS FOR REVIEW  

Q.1 Describe the homogeneous coordinates? 

Q.2 Discuss Roman Surface? 

Q.3 Discuss real projective plane in three dimensions? 

Q. 4 What is arithmetic operations in real analysis? 

Q. 5 What is complex projective plane?  

3.9 SUGGESTESTED READINGS & 

REFFERENCE  

1.  Tao, Terence (2003). "Lecture notes for MATH 

131AH" (PDF). Course Website for MATH 131AH, Department 

of Mathematics, UCLA. 

2. ^ Some authors (e.g., Rudin 1976) use braces instead and 

write  However, this notation conflicts with the usual notation for 

a set, which, in contrast to a sequence, disregards the order and 

the multiplicity of its elements. 

3. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th 

ed.). Brooks/Cole. ISBN 0-495-01166-5. 

4. ^ Royden 1988, Sect. 5.4, page 108; Nielsen 1997, Definition 

15.6 on page 251; Athreya & Lahiri 2006, Definitions 4.4.1, 

4.4.2 on pages 128,129. The interval I is assumed to be bounded 

and closed in the former two books but not the latter book. 

3.10 ANSWERS TO CHECK YOUR 

PROGRESS 

1. Hint please check Calculus section  

2. Hint Please check section 3.3.2 Arithmetic operations 
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UNIT 4 ALGEBRAIC OPERATIONS 

STRUCTURE 

4.1 The Meaning of Algebra 

4.2 Signed Numbers 

     4.2.1 Operations with Signed Numbers 

     4.2.2 Algebraic Expressions and Terms 

     4.2.3 Addition and Subtraction of Expressions 

     4.2.4 Use of Parentheses 

4.3 Algebraic Operations II 

4.4 Algebraic Equations 

4.5 Axioms for Solving Equations 

      4.5.1 Solving Fractional Equations 

       4.5.2 Ratio and Proportion 

4.6 Basic Approach to Solving Algebraic Word Problems 

      4.6.1 Steps for Solving Algebraic Word Problems 

      4.6.2 Problems Involving Money 

      4.6.3 Problems in Uniform Motion 

4.7 Keyword 

4.8 Lets sum up 

4.9 Questions for Review 

4.10 Suggestion Reading& Reference 

4.11 Answers to check your progress 

4.1 THE MEANING OF ALGEBRA 

The previous articles have been concerned with the arithmetic operations 

involving addition, subtraction, multiplication, and division. These 

operations have been applied to whole numbers and fractions. Algebra 

involves the extension of these principles to symbols that are used to 

represent numbers. The symbols are used to write arithmetic statements 

for formulas into which many sets of specific numerical values can be 

substituted. Therefore, algebra may be called generalized arithmetic. For 

example, the area of a rectangle equals the length times the width. This is 

represented by the algebraic expression A = lw. 

Area = length x width 

https://www.myodesie.com/wiki/index/returnEntry/id/3079#Algebraic%20Operation
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The above statement for the area of a rectangle is always true. To 

compute a numerical value for the area of a specific rectangle, the 

numerical values of the length, l, and the width, w, are substituted and 

the indicated multiplication carried out. Letters are used to represent 

numbers. Since these letters represent numbers, they are subject to the 

same rules developed for whole numbers and fractions. 

4.2 SIGNED NUMBERS 

Before taking up the study of algebra, it is necessary to become familiar 

with the concept of signed numbers. The numbers that are used to 

describe the number of objects in a group, and the counting numbers, are 

always positive numbers. That is, they are always greater than zero. 

However, there are many occasions when negative numbers, numbers 

less than zero, must be used. These numbers arise when describing 

measurement in a direction opposite to the positive numbers. For 

example, if assigning a value of +3 to a point which is 3 feet above the 

ground, what numbers should be assigned to a point which is 3 feet 

below the ground? Perhaps the most familiar example of the use of 

negative numbers is the measurement of temperature, where 

temperatures below an arbitrary reference level are assigned negative 

values. 

Every number has a sign associated with it. The plus (+) sign indicates a 

positive number; the minus (-) sign indicates a negative number. When 

no sign is given, a plus sign is implied. The fact that the plus and minus 

signs are also used for the arithmetic operations 

of addition and subtraction should not be the cause for confusion since 

their meanings are equivalent. 

Every number has an absolute value, regardless of its sign. The absolute 

value for a number is indicated by a pair of vertical lines enclosing the 

number. The absolute value indicates the distance from zero, without 

regard to direction. The number +5 is 5 units from zero, in the positive 

direction. The number -5 is also 5 units from zero, in the negative 

direction. The absolute value of each of these numbers is 5. 

The absolute value of -5, written as |-5|, = 5. 

|-5| = 5 
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The absolute value of +5, written as |+5|, is also 5. 

|+5| = 5 

Therefore, 

|-5| = |+5| = 5 

4.2.1 Operations with Signed Numbers 

Performing the operations of addition, subtraction, multiplication, 

and division are more easily visualized if the numbers are placed on a 

number line. The positive numbers are greater than zero, and lie to the 

right of zero on the number line. The negative numbers are less than 

zero, and lie to the left of the zero on the number line. 

-4 -1 -2 -10 +1 +2 +3 +4 

The number line extends an infinite distance in each direction and 

therefore includes all numbers. The process of addition can be considered 

as counting to the right on the number line. For example when adding 

1+2 the location of +1 must be found on the number line. In this example 

2 units must be counted to the right, for adding. The result is +3. To 

illustrate further, when adding -2 and +4 the location of -2 on the number 

line must first be found. Counting 4 units to the right ends up at +2. 

The number line is useful for illustrating the principles of addition, but it 

clearly would be inconvenient to use in the case of large numbers. 

Consequently, the following rules were developed to govern the addition 

process: 

 To add two numbers with like signs, find the sum of their absolute values 

and prefix the common sign. 

 To add two numbers with unlike signs, find the difference between their 

absolute values and prefix the sign of the number having the greater 

absolute value. 

 To add more than two numbers, combine the positive and negative 

numbers separately using the rule for numbers with like signs and then 

combine the two results using the rule for numbers with unlike signs. A 

few examples are: 

1. Add -37 and -16. 
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Since these numbers have like signs, add their absolute values and prefix 

the common sign. 

|-37| = 37 37 

|-16| = 16 +16 

53 

Answer= -53 

2. Add -37 and +16. 

Since these numbers have unlike signs, take the difference between their 

absolute values and prefix the sign of the number having the greater 

absolute value. 

|-37| = 37 37 

|+16| = 16 -16 

21 

Answer= -21 

3. Add +32, -16, -19, -12 and +14. 

First, combine the positive and negative numbers separately. 

Positive Negative 

32 -16 

14 -19 

46 -12 

-47 

Then combine the results: (+46) + (-47) = -1 

The subtraction of signed numbers is governed by only one rule. To 

subtract two signed numbers, change the sign of the subtrahend and then 

add the two numbers as shown below. 

Subtract 7 from 11. (11) - (7) = (11) + (-7) = 4 

Subtract -7 from 11. (11) - (-7) = (11) + (+7) = 18 

Subtract -7 from -11. (-11) - (-7) = (-11) + (+7) = -4 

Subtract 7 from -11. (-11) - (7) = (-11) + (-7) = -18 

In each of these examples, the subtrahend was changed, then the rules 

for addition were followed. 

The multiplication and division of signed numbers are governed by the 

following rules: 
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 The product of two numbers with like signs is a positive number. The 

product of two numbers with unlike signs is a negative number. In 

symbols: 

(+) x (+) = (+) (+) x (-) = (-) 

(-) x (-) = (+) (-) x (+) = (-) 

 The division of numbers with like signs gives a positive quotient. The 

division of numbers with unlike signs gives a negative quotient. In 

symbols: 

(+) ÷ (+) = (+) (+) ÷ (-) = (-) 

(-) ÷ (-) = (+) (-) ÷ (+) = (-) 

Examples: 

1. Multiply +4 and –3 (+4) x (-3) = -12 

2. Divide -24 by –6 (-24) ÷ (-6) = +4 

Remember that multiplication is really a short form of addition. When 

multiplying +4 by -3, the number -3 is added four times. That is, (-3) + (-

3) + (-3) + (-3) = -12. Also, since division is a short form of subtraction, 

the number -6 is subtracted from -24 four times in order of reach 0, i.e., 

24 - (-6) - (-6) - (-6) - (-6) = 0. Although the process could be repeated 

for the multiplication and division of any signed numbers, usage of the 

two rules will produce equivalent results. 

4.2.2 Algebraic Expressions and Terms 

An algebraic term is "a combination of numbers and letters (literal 

numbers) linked by multiplication or division." There is no limit to the 

number of quantities in the term. The following are all algebraic terms: 

1. 3 6. (2xz)/ y 

2. 3x 7. 3abcxy2 

3. 4ab 8. (5bcx2yz)/ 3a 

4. (7x2)\\ y 9. 19/ abcxy 

5. 11xyz 10. X2 

An algebraic expression is "a sum or difference of algebraic terms." 

There is no limit as to the number of terms in the expression. 
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The following are all algebraic expressions: 

1. 3 + 4ab 

2. 11xyz + (2xz)/y 

3. 7x2/y + 19/abcxy + y2 + (2xy)/ z 

The factors of a term are each of the numbers or letters that, when 

combined (multiplied or dividend), produce the term. For example: 

1. 5, x, and y are factors of the term 5xy. 

2. 7, x, and y are factors of the term (7x2)/y 

3. The numbers 3 and 5 are factors of the term 15. 

Notice that numbers are often referred to as factors, as was done in 

example three above. Numbers may have many factors. 

Prime numbers are those which have only themselves and 1 as factors. 

Examples: 3, 7, 11, 13, and 17 are prime numbers. Their only factors are 

themselves and 1. 

When considering the factors of numbers, only the factors which are 

whole numbers are considered. In the example above, the numbers 3.5 

and 2 are factors of 7 in the sense that 3.5 x 2 = 7, but of course 3.5 is not 

a whole number. 

The word coefficient is used for the numerical factors in an algebraic 

term. In the term 5xy, the number 5 is the coefficient of xy. The 

coefficient need not be a whole number. 

As we said before, algebraic expressions may have any number of terms. 

These expressions have special names, which indicate the number of 

terms contained in them. A monomial is an algebraic expression 

consisting of only one term. A polynomial is an algebraic expression, 

which contains more than one term. Special names for polynomials are 

binomials, consisting of two terms, and trinomials, consisting of three 

terms. 

Examples: 

1. 3x2y and 2x are monomials. 

2. 3x2y + 2x is a binomial. 

3. 3x2y + 2x + z is a trinomial. 

4.2.3 Addition and Subtraction of Expressions 
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Suppose there are two terms, 2 and 3, and their sum is desired: 2 + 3. The 

sum, of course, is represented by the single symbol 5. This really means 

that 2 units plus 3 units is equal to 5 units. If literal numbers are used 

instead of numerical ones, they can be added or subtracted provided that 

they have the same units. The literal number x added to the literal 

number 2x will result in the number 3x. Algebraic terms having exactly 

the same letter parts are called like terms, and may be added or 

subtracted by adding or subtracting the numerical coefficients. For 

example: 

1. Add 3x2, -2x2, and 7x2. 

(3x2), (-2x2), and (7x2) = 8x2 

2. Add (3x2 - 2xy + 5y2) and (x2 + y2). 

3x2 - 2xy + 5y2 

+ x2 + y2 

4x2 - 2xy = 6y2 

Notice that the like terms are added or subtracted directly. Unlike terms 

cannot be combined even when they contain several of the same letters. 

The terms must be exactly the same. For example: 

1. 3x + 2y don‘t equal 5xy, just as 3 apples + 2 oranges don‘t equal 5 apple-

oranges. 

2. 3x3y3z4 + 5x2y3z4 cannot be combined further. 

In the second example above, the terms are very similar but one has a 

factor of x3 and the other a factor of x2. This prevents them from being 

combined. 

4.2.4 Use of Parentheses 

Whenever algebraic expressions are written out horizontally, there will 

always be confusion regarding just what operations are to be performed. 

Consider, for example, the expression 3 + x ÷ 2 + 5. This can have many 

different interpretations. It could mean add 3 and x, and divide the sum 

by 7, or divide x by 7 and add it to 3, or add 3 and x, divide by 2, and add 

5, etc. Parentheses or brackets are used to group the quantities in the 

exact order in which the arithmetic operations are to be performed. In the 
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example above, the expression to mean add 3 and x, and divide the sum 

by 7, is written: 

(3 + x) ÷ (2 + 5) 

This indicates that the entire quantity (3 + x) is to be divided by the 

entire quantity (2 + 5). Other examples are: 

1. (x + Y) ÷ 2 is used to indicate the entire quantity x + y is to be divided by 

2. 

2. 4(x + 2) means 4 times the quantity (x + 2). It also equals 4x + 8. 

The following rules govern the use of parentheses: 

 If a quantity within parentheses is preceded by a plus sign (+), this plus 

sign and the parentheses may be omitted without changing the sign of 

any term within the parentheses. 

 If a quantity within parentheses is preceded by a minus sign (-), this 

minus sign and the parentheses may be omitted provided that the sign of 

each term within the parenthesis changed. 

 If a quantity within parentheses is preceded or followed by another 

quantity without an intervening sign, multiplication is indicated and the 

parentheses can be omitted provided that each term within the 

parentheses is multiplied by the quantity immediately preceding or 

following the parentheses. 

When the parentheses are used in algebraic expressions, they are used in 

closed pairs. Such expressions are evaluated by working from the 

innermost to the outermost closed pair, as shown in the following 

examples: 

1. Evaluate (3xy) + (3x2 - 5xy) - (4xy + 3z). 

(3xy) + (3x2 - 5xy) - (4xy + 3z) 

Rule 1 Rule 2 

= 3xy + 3x2 - 5xy - 4xy -3z 

= 3x2 - 3z - 6xy = 3(x2 - z - 2xy) 

2. Evaluate 3x - 2(5y -(4x +2)) 

3x - 2(5y - (4y +2)) 

= 3x -2(5y - 4x -2) 

Rule 3 
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= 3x -10y + 8x =4 

= 11x - 10y + 4 

Note the points in the examples where the rules have been applied. 

Check your Progress -1  

1. What is the meaning of Algebra? 

……………………………………………………………………… 

…………………………………………………………………….. 

2. What is the Signed Number? 

……………………………………………………………………… 

…………………………………………………………………….. 

4.3 ALGEBRAIC OPERATIONS II 

Multiplication and Division of Algebraic Expressions 

The last section covered algebraic terms and how they can be combined 

by addition or subtraction only when they are exactly alike, except for 

their numerical coefficients. However, unlike terms can be multiplied or 

divided directly as shown below. 

1. Multiply 4a by 3b.(4a)(3b) = 12ab 

2. Multiply xyz by 2ab.(xyz)(2ab) = 2abxyz 

3. Divide 4a by 2b.(4a/2b) = (2a/b) 

To multiply or divide terms that include the same literal number (letter), 

the rules which apply to this type of operation must be introduced. This 

subject is treated in much greater detail elsewhere, but for now it is 

sufficient to state The following rule: 

For factors which are the same base raised to a power (exponent), the 

factors are multiplied by adding the exponents and are divided by 

subtracting the exponents. The following example demonstrates this rule: 

1. Multiply a3 by a4. a3 = a . a . a a4 = a . a . a . a a3 x a4 = (a . a . a)(a . a 

. a . a) 

= (a . a . a . a . a . a . a) 

= a7 
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In applying this rule to a number that does not have an exponent 

associated with it, that number is treated as having an exponent of +1. 

For example: 

1. Multiply x2 and x3. 

(x2)(x3) = x2+3 = x5 

2. Divide x5 by x2. 

(x5) ÷ (x2) = x5-2 = x3 

3. Multiply (x2yz) and (x5y2). 

(x2yz)(x5y2) = x2+5y1+2z = x7y3z 

Multiplication of monomials follows the following three steps: 

Step 1. Determine the signs of the product by the rule for the 

multiplication of signed numbers. 

Step 2. Multiply the numerical coefficients of the factors to get the 

numerical coefficient of the product. 

Step 3. Multiply the literal parts by writing down all literal factors and 

adding the exponents of like literal factors. 

Examples: 

1. (3abx2) (-4bcx3) 

-(3) (4) ab1+1cx2+3 

= -12ab2cx5 

2. (7x2yz3) (4xy2z3) 

= (7) (4) x2+1y1+2z3+3 

= 28x3y3z6 

The division of monomials is done in exactly the same way, except the 

rules for division rather than multiplication is used. 

Step 1. Determine the sign of the quotient by the rule for the division of 

signs. 

Step 2. Divide the numerical coefficients to get the numerical coefficient 

of the quotient. 

Step 3. Divide the literal parts by writing down all the literal factors of 

the dividend and subtracting the exponents of like factors in the divisor. 

Examples: 

1. Divide 4x2yz by 2xab. 

((4x2yz)/ (2xab)) = 4/2 (((x2 - 1)(y1)(z1))/ (ab)) = 2 ((xyz)/ (ab)) 

2. Divide (-36a2bx3y4z) by 4abxy4. 
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The multiplication and division of monomials involves a straight-forward 

multiplication and division of terms. The multiplication of polynomials is 

only slightly more complicated. To multiply polynomials, multiply each 

term of one polynomial by each term of the other, and then combine any 

like terms. As an example, multiply the two numbers 6 and 8. The 

answer is 48. If instead, the number 6 is represented as (4 + 2) and the 

number 8 as (5 + 3), the product can also be written as (4 + 2)(5 + 3), a 

product of two polynomials. Each term of one polynomial is multiplied 

by each term of the other and combined. 

(4 + 2)(5 + 3) = (4 x 5) + (4 x 3) + (2 x 5) + (2 x 3) 

= 20 + 12 + 10 + 6 

= 48 

The multiplication process is done in exactly the same way for algebraic 

polynomials. 

Example: Multiply (2x2 + x - 3) and (6x2 - 2x - 5). 

(2x2 + x - 3)(6x2 - 2x - 5) 

= (2x2)(6x2) - (2x2)(2x) - (2x2)(5) + x(6x2) - (x)(2x) - (x)(5) 

- 3(6x2) + 3(2x) + (3)(5) 

= 12x4 - 4x3 - 10x2 + 6x3 - 2x2 - 5x - 18x2 + 6x + 15 

Combining like terms: 

= 12x4 + 2x3 - 30x2 + x + 15 

Factoring 

Factoring is the reverse of multiplication. For example, the numbers 2 

and 3 are factors of the number 6, since 2 x 3 = 6. In the same way, the 

factors of the polynomial are two (or more) other polynomials which 

when multiplied yield the original polynomial. In the example at the end 

of the last section, the two factors of the polynomial (12x4 + 2x3 - 30x2 

+ x + 15) are (2x2 + x - 3) and (6x2 - 2x - 5). Therefore, the process of 

factoring involves finding those factors as shown below. 

Certain algebraic expressions can be factored by extracting a factor 

which is common to each term. The following rules apply: 
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1. Inspect the terms of polynomial to determine the greatest common factor 

that is contained in each term. This common factor is one factor. 

2. Divide this common factor into each term of the polynomial. The 

quotient is the other factor. 

Factor: (9x3 + 6x2 + 3x) 

The greatest common factor of each term is 3x. Dividing 3x into each 

term yields 3x2 + 2x + 1. Therefore, the two factors are: 

(3x) (3x2 + 2x + 1) 

The factoring process can be checked simply by multiplying the two 

factors together and obtaining the original polynomial. 

Certain types of binomials can be factored immediately. If the binomial 

is composed of the difference of two perfect squares, the two factors will 

be the sum and difference of the square roots of each term in the 

binomial. This is shown below by factoring 

(81x4 - 4) 

(81x4 - 4) is the difference between two squares. The square root of 81x4 

is 9x2; the square root of 4 is 2. Therefore, the two factors are: 

(9x2 + 2) and (9x2 - 2) 

Therefore, (81x4 - 4) = (9x2 + 2)(9x2 - 2) 

Note that this rule does not apply to a binomial, which is the sum of two 

squares, only the difference of two squares. 

The most complicated polynomial usually dealt with is the trinomial, in 

particular, trinomials which are in the form ax2 + bx + c. The a, b, and c 

are positive or negative numbers. There is a straight forward procedure 

which will yield the factors. First, multiply a and c, to obtain the product 

ac. Then list all the factors of ac. 

Example: Factor (4x2 - 10x -6) 

Here, a = 4, c = -6. 

The product of a and c is (4)(-6) = -24 

The factors of -24 are: 

-24, 1 24, -1 

-12, 2 12, -2 

-8, 3 8, -3 
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-6, 4 6, -4 

The pair of factors whose algebraic sum is equal to b is then found. For 

example, in the [removed]4x2 - 10x -6), b = -10. The factors of -24 

whose algebraic sum is -10 are -12, 2 since -12 + 2 = -10. 

Example: The factors of (4x2 - 10x - 6) are: 

 

The two factors obtained can be checked by multiplication. 

For another example: Find the two factors of (3x2 + 4x - 15). 

1. Find factors of (3) (-15) = -45 

-45, 1 
 
45, -1 

-15, 3 
 
15, -3 

-9, 5 
 
9, -5 

2. Find the two factors whose algebraic sum is +4. They are 9, -5, since 9 

+ (-5) = 4. 

3. The factors are:  

Every trinomial can be factored in this matter. There may be cases, 

however, where the numbers may not turn out to be whole numbers, but 

the factoring process will still be valid. 

Algebraic Fractions 

All operations that were developed with regard to 

numerical fractions apply directly to algebraic fractions. If the numerator 

and denominator of any fraction is multiplied or divided by the same 

quantity, the value of the fraction is unchanged. If the fractions are to be 

added or subtracted, they must have the same denominators. Finally, the 

fractions should be reduced to their simplest form. These rules apply to 

algebraic fractions because the letters simply represent numbers, and so 

they must obey the same rules. 

Algebraic fractions can frequently be reduced by factoring both the 

numerator and denominator, and then dividing out any common factors. 

For example: 
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Reduce the fraction:  

The numerator of the fraction is the difference between two squares, and 

so can be factored as (x + 3) (x -3). 

The denominator can be factored according to the method developed for 

factoring trinomials. Its two factors are: (3x + 1)(x -3). 

The fraction is now:  

Since the factor (x -3) is common to both numerator and denominator, it 

can be divided out, leaving: 

(x + 3) 

(3x + 1) 

Fractions are added or subtracted by finding the lowest common 

denominator and then combining the numerators. To demonstrate this 

adds the fractions: 

 

The lowest common denominator is (x + 3)(x -3). Rewriting each 

fraction with the LCD as its denominator: 

 

The procedure is just the same as for numerical fractions. 

Changing Signs 

When dealing with algebraic expressions and numerical expressions, use 

has been made of parentheses to group terms so that the operations 

of addition, subtraction, multiplication, and division are done in the 

proper order. When expressions are combined, the parentheses are 

removed, and care must be taken to properly account for the algebraic 

signs. 
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In an algebraic expression, parentheses which are preceded by a minus(-) 

sign may be removed by changing the sign of each term in the 

parentheses. For example, -(2x2 + 3x - 7) becomes -2x2 - 3x + 7. The 

expression is equivalent to + (-1)(2x2 + 3x -7). 

Parentheses which are preceded by a plus (+) sign may be removed 

without changing the sign of any term in the parentheses + (2x2 + 3x - 7) 

would be equal to 2x2 + 3x - 7. 

If the parentheses are preceded by some quantity other than -1 or +1, this 

indicates that the multiplication is to be performed if the parentheses are 

to be removed. This is really just an application of the rule for 

multiplying polynomials, where each term of one polynomial multiplies 

every term of the other. For example: 

-3(2x2 + 3x -7) 

= -(6x2 + 9x - 21) 

= -6x2 - 9x + 21 

In connection with any fraction, there are always three signs associated 

with it: 

 the sign of the numerator 

 the sign of the denominator 

 the sign of the fraction itself 

If any two of these three signs are changed, the value of the fraction will 

not be changed. The following example is used to demonstrate this. 

 

Use parentheses to show explicitly the three signs: 

 

All of these fractions have the same value. What is really being done is 

multiplying the numerator and denominator by the same quantity, in this 

case -1. This operation does not change the value of a fraction. 

4.4 ALGEBRAIC EQUATIONS 

Definition: 
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An equation is "a mathematical statement which says that two quantities 

are equal." The equality is expressed by the equal (=) sign between the 

two quantities. Thus, the statement 3 = 3 is an equation. It says that the 

quantity to the left of the (=) sign is equal to the quantity to the right of 

the (=) sign. Similarly, the statement x = 3 is an equation. It says that the 

variable represented by the letter x has the value of 3. 

There are two types of equations, identities and conditional equations. 

An identity is an equation which is always true no matter what numerical 

value is given to the letter which represents a variable, or unknown. 

3x + 5x = 8x is an identity since it is true for all values of x. 

The equations which are dealt with most of the time are conditional 

equations. These are equations which are true only for some particular 

value or values of the unknown. 

3x + 5 = 8 is a conditional equation since it is true only for the value of x 

= 1. 

One of the fundamental purposes of algebra is to determine the value of 

the unknown which makes an equation true; that is, which "satisfies" the 

equation. In the example above, it can be determined that the value x = 1 

satisfies the equation by replacing the letter x by the number 1 and 

performing the indicated arithmetical operations. Algebra provides the 

mechanism whereby the equation can be solved; that is, its root may be 

determined. 

4.5 AXIOMS FOR SOLVING EQUATIONS 

The equality sign (=) that separates two equal quantities allows certain 

operations to be performed in our efforts to solve an equation. For any 

equation, the following statements are always true: 

 Axiom 1. If the same quantity is added to both sides of an equation, the 

new equation will still be true. If 5 is added to both sides of the equation 

x - 5 = 8, the new equation x = 13 results. 

 Axiom 2. If the same quantity is subtracted from both sides of an 

equation, the new equation will still be true. If 5 is subtracted from both 

sides of the equation x + 5 = 8, the new equation x = 3 results. 
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 Axiom 3. If both sides of an equation are multiplied by the same 

quantity, the new equation will still be true. If both sides of the equation 

(1/3)x =5 are multiplied by 3, the new equation x = 15 results. 

 Axiom 4. If both sides of an equation are divided by the same quantity, 

the new equation will still be true. If both sides of the equation 3x = 9 are 

divided by 3, the new equation x = 3 results. 

The four axioms for solving algebraic equations may be summarized by 

one general principle. Whatever operation is performed on one side of an 

equation, the same operation must be performed on the other side of the 

equation if the equation is to remain true. For example: 

1. Solve the equation 4x + 3 = 19. 

Step 1. Using Axiom 2, subtract 3 from both sides of the equation. 

4x + 3 - 3 = 19 - 3 

4x = 16 

Step 2. Using Axiom 4, divide both sides of the equation by 4. 

(4/4)X - 8 = 2 

2. Solve the equation. 

(1/4)X- 8 = 2 

Step 1. Using Axiom 1, add 8 to both sides of the equation. 

¼X - 8 + 8 = 2 + 8 

¼X = 10 

Step 2. Using Axiom 3, multiply both sides of the equation by 4. 

(4)¼X = 10(4) 

X = 40 

In each of these examples, the axioms are used to isolate the unknown on 

one side of the equation. 

There is a shorter method available for applying 

the addition and subtraction Axioms 1 and 2 to algebraic equations. Any 

term may be transposed or transferred from one side of an equation to the 

other provided its sign is changed. For example: 

In the equation 5x + 4 = 7, the 4 can be transposed to the other side of the 

equation by changing the sign. 

5x + 4 = 7 

5x = 7 - 4 

5x = 3 

https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Addition
https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Subtraction
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This corresponds to applying Axiom 2, subtracting 4 from both sides of 

the equation. 

4.5.1 Solving Fractional Equations 

All equations studied so far contained only whole numbers. In addition to 

whole numbers, an equation may also contain fractions, either common 

fractions or decimal fractions. A fractional equation is an equation that 

contains fractions. The unknown may be located anywhere in the 

equation. 

 

is a fractional equation. 

Fractional equations are solved exactly as any other equation, using the 

four axioms. Generally, the equation is first cleared of the fractions. As 

shown below, operations are performed that remove all of the fractions. 

Solve the following fractional equation: 

 

Step 1: Multiply each term by 8x, which is the lowest common 

denominator. 

 

5x – 72 = 4x - 6 

Step 2: Transpose (- 72) and (4x). 

5x – 4x = -6 + 72 

x = 66 

As the final step in the solution of any equation, the root should be 

substituted back into the equation to ensure that it makes the equation 

true. If the root does not check, then an error has been made during the 

solution. 

Check to see if x = 66 is a root of the equation. 

 

 

https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Fractions
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The root checks. 

4.5.2 Ratio and Proportion 

The concept of ratio and proportion are one which is used almost every 

day. If the quantities listed in a recipe will produce servings for eight, it 

is instinctively known that to make servings for four, each quantity 

should be cut in half. What has been done is to form a ratio of the 

number of servings. A ratio is a comparison of two like quantities 

by division. It is often indicated by a colon (:), although it is really a 

fraction. 

The ratio of $25 to $5 is $25 ÷ $5 which equals 5. This is often indicated 

as: 

$25 : $5 and is read $25 is to $5. It can also be written as a fraction: 

 

A proportion is a statement of equality between two equal ratios. 

 

or: $5 : $25 = 2 lb : 10 lb 

Notice that the ratios are comparisons of different amounts of the like 

quantities, dollars and pounds, respectively. The proportion simply states 

that the ratio of $5 to $25 is equal to the ratio between 2 pounds and 10 

pounds. When the proportion is written out in the colon form, there is a 

relationship between the various terms. The first and fourth terms in a 

proportion are called the extremes. The second and third terms are called 

the means. For example: 

In the proportional $5 : $25 = 2 lb : 10 lb, $5 and 10 lb are the extremes, 

$25 and 2 lb are the means. 

In any proportion, the product of the means equals the product of the 

extremes. 

$5 : $25 = 2 lb : 10 lb 

The product of the means is [$25] [2 lb] = 50 dollar-pounds. 

The product of the extremes is [$5] [10 lb] = 50 dollar-pounds. 

This can be seen clearly if the proportion is written in fractional form. 

https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Division
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1. Multiply the equation by $25. 

 

2. Multiply the equation by 10 lb. 

$5 x 10 lb = 2 lb x $25 

50 $-lb = 50 $-lb 

This principle permits finding any missing term in a proportion. For 

example: 

3. Find the missing term in the proportion 5 : x = 4 : 15. 

The product of the extreme is: [5] [15] = 75 

The product of the means is: [4] [x] = 4x 

4x = 75 

 

This could also be solved in fractional form. 

4. Find the missing term in the proportion 5 : x = 4 : 15. 

Rewrite as: 

 

The concepts of ratio and proportion are useful in solving problems such 

as the example below. 

If 5 pounds of apples cost 80 cents, how much will 7 pounds cost?Using 

x for the cost of 7 pounds of apples, the following proportion can be 

written. 

 

The product of the extremes is (5)(x) = 5x. 

The product of the means is (7)(80) = 560. 

Equate these two products and solve the resulting equation. 

5x = 560 

 



Notes 

105 

x = 112 

The unit of x is cents. Thus, 7 pounds of apples cost 112 cents or $1.12. 

4.6 BASIC APPROACH TO SOLVING 

ALGEBRAIC WORD PROBLEMS 

The problems encountered in everyday life, however, are rarely stated in 

equation form. These problems are stated in words, and they must be 

translated into the appropriate mathematical equations in order to find the 

solution. This is a two-step process: 

 Step 1: Write the equation(s) from the information given. 

 Step 2: Solve the equation(s). 

Methods for accomplishing Step 2 have already been studied. In this 

section, the methods for accomplishing Step 1 will be presented. 

4.6.1 Steps for Solving Algebraic Word Problems 

Before attempting to solve any word problem, the problem must be 

understood completely. It is frequently beneficial to draw a picture of the 

physical situation described by the problem. The drawing should be 

labelled with the known and unknown quantities. At the very least, these 

quantities should be listed in some logical order. 

After ensuring that the problem is understood, it can be solved by 

following these five fundamental steps: 

Step 1. Let some letter, such as x, represent one of the unknowns. There 

will always be a choice of which unknown can be called x. There is no 

one right choice. For example, suppose that it is given that an orange 

costs 3 cents more than an apple. If x equals the cost of the orange, the 

cost of the apple will be x - 3. On the other hand, if x equals the cost of 

the apple, then the cost of the orange is x + 3. Either choice is correct. 

Step 2. Express the other unknowns, using the information given, in 

terms of x. In doing this, it is helpful to look for certain words that 

indicate algebraic operations. The words sum and total signify addition; 

the words difference and less than signify subtraction; the words times 

and multiples of signify multiplication; the words divided by and per 

signify division. The words same as and equal to signify equality. 

https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Addition
https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Subtraction
https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Multiplication
https://www.myodesie.com/wiki/index/returnEntry/id/Whole%20Numbers%20and%20Fractions#Division
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Step 3. Write an equation. Make the equation say in symbols exactly 

what the problem says in words. This involves reading the problem 

carefully to understand exactly what is being asked. 

Step 4. Solve the equation using the methods discussed in previous 

sections. 

Step 5. Check the solution by substituting it into the equations. For 

example: 

A family took a trip and travelled a total of 820 miles in three days. They 

drove twice as many miles the second day as on the first. The third day 

they drove 60 miles less than they did on the second day. Find the 

distance travelled each day. 

Before solving this word problem, exactly what must be known is 

required to be found, that is, what are the unknowns? For this example, 

draw a diagram of the problem and write in the known and unknowns. 

Now proceed through the following five steps to solve the problem: 

Step 1. Let x = the number of miles driven on the first day. x could = the 

number of miles driven on the second or third day, but for the moment x 

= the number of miles driven the first day. 

Step 2. It is given that they drove twice as many miles on the second day 

as the first. Therefore, if x is the number of miles driven on the first day, 

then 2x is the number driven on the second day. It is also given that on 

the third day, they drove 60 miles less than on the second day. If they 

drove 2x miles on the second day, they drove 2x - 60 miles on the third 

day. All of the unknowns have been expressed in terms of x. 

Step 3. Write an equation, which relates the unknowns. Total miles 

driven = miles driven on the first day + miles driven on second day - 

miles driven on third day. The total miles driven are 820. Therefore, x + 

(2x) + (2x - 60) = 820 

Step 4. Solve the equation. x + 2x + 2x – 60 = 820 

5x = 820 + 60 

5x = 880 

 

x = 176 miles 

This is the number of miles driven on the first day. 

Answers: 
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First day: x = 176 miles 

Second day: 2x = 352 miles 

Third day: 2x – 60 = 292 miles 

Step 5. Check the answers. x + 2x + 2x – 60 = 820 

176 + 352 + 292 = 820 

820 = 820 

In solving this problem, let x equal the number of miles driven on the 

first day. There is nothing magical about this choice. Just to illustrate the 

point, solve the problem in a slightly different manner. Let y be the 

number of miles driven on the second day. Then will be the miles 

driven on the first day, and y - 60 will be the miles driven on the third 

day. The equation will now be: 

 

Solve this equation and see that the answer is the same as before. Try 

another example: 

A man is 2 years older than three times his son‘s age. Ten years from 

now he will only be twice as old as his son. What are their ages now? 

Step 1. Let x = the son‘s age now. 

Step 2. Then, 3x + 2 = the father‘s age now. 

Step 3. The father‘s age ten years from now will be two times the son‘s 

age at that time. 

(3x + 2) + 10 = 2(x + 10) 

Step 4. (3x + 2) + 10 = 2(x + 10) 

3x + 12 = 2x + 20 x = 8 

Answers: 

Son‘s age now: x = 8 

Father‘s age now: 3x + 2 - 3(8) + 2 = 26 

4.6.2 Problems Involving Money 

Algebraic problems involving money can become confusing because 

there is a tendency to use quantity and value interchangeably. For 

example, a quantity of 5 dimes has a value of 50 cents, whereas a 

quantity of 5 nickels has a value of 25 cents. The quantities are the same, 
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but the values are different. The general relationship used to solve 

algebraic word problems involving money is: 

Total Value = Sum of [(Quantity) times (Value per Quantity)] 

Example: The total value of five pennies, two nickels, three dimes, and 

four quarters is: 

[(5) x $0.01)] + [(2) x ($0.05)] + [(3) x ($0.10)] + [(4) x ($0.25)] = Total 

Value 

$0.05 + $0.10 + $0.30 + $1.00 = $1.45 

―How many dimes?‖ is a different question than ―how much in dimes?‖ 

A total of 6,000 tickets were sold for a basketball game. Tickets were 

priced at $2.00 and $2.80 each. A total of $14,264 was collected. How 

many of each price ticket were sold? 

Step 1. Let x = the number of $2.00 tickets sold. 

Step 2. Then, 6,000 - x = the number of $2.80 tickets sold. 

Step 3. Total Collected = (Number of $2.00 Tickets Sold) x ($2.00) + 

(Number of $2.80 Tickets Sold) x ($2.80) 

$14,264 = (x)($2.00) + (6,000 - x)($2.80) 

Step 4. $14,264 = 2x + 16,800 - 2.8x 

2.8x - 2x = $16,800 - $14,264 

0.8x = 2,536 

x = 3,170 

Answers: 

Number of $2.00 Tickets Sold: x = 3,170 

Number of $2.80 Tickets Sold: 6,000 - x = 2,830 

Step 5. Check: 

(3,170)($2.00) + (2,830)($2.80) = $14,264 

$6,340 + $ 7,924 = $14,264 

$14,264 = $14,264 

Of course, the problem could also have been solved by letting x equal the 

number (quantity) of $2.80 tickets sold. Note that the quantity of tickets 

sold is different than the value of the tickets. 

4.6.3 Problems in Uniform Motion 
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There is a large variety of problems that involve travel and travel times. 

In order to solve these problems, a relationship between distance, speed 

and time is needed. This relationship is: 

Distance = (Speed) x (Time) 

D = vt 

If a car is moving at a uniform speed of 60 miles per hour for two hours, 

the distance travelled is 120 miles. d = vt d = (60 mph)(2 hr) d = 120 

miles 

Algebraic word problems involving uniform motion are solved using this 

general relationship and following the steps for solving any algebraic 

word problem. This is shown in the example below. 

A man takes a trip of 675 miles, part of the trip by train at 60 mph and 

the rest of the trip by car at 50 mph. If the entire trip takes 12 hours, how 

far has he travelled by each mode of transportation? 

As always, before attempting to solve the problem, make sure what is 

being asked is understood. 

Step 1. Let x = the number of miles travelled by train. 

Step 2. 675 miles total are travelled with x miles travelled by train, and 

the remainder travelled by car. Thus, the number of miles travelled by 

car is (675 - x). 

The number of hours travelled by train equals the distance travelled 

divided by the speed. Thus, the number of hours travelled by train equals 

 

The total number of hours travelled is 12 with hours travelled by train 

and the remainder travelled by car. Thus, the total number of hours 

travelled by car is: 

  

and the distance travelled by car is: 

 

Step 3. Distance travelled by train + Distance travelled by car = 675. 
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Step 4. Distance travelled by train: x = 450 miles 

Distance travelled by car: 675 - x = 675 - 450 = 225 miles. 

Step 5. Check 

450 + 225 = 675 this corresponds to the total distance travelled. 

675 = 675 

This example may seem complicated, but if the work is arranged in a 

logical, step-by-step manner, the solution process becomes 

straightforward. 

4.7 LETS SUM UP 

Elementary algebra encompasses some of the basic concepts of algebra, 

one of the main branches of mathematics. It is typically taught 

to secondary school students and builds on their understanding 

of arithmetic. Whereas arithmetic deals with specified numbers, algebra 

introduces quantities without fixed values, known as variables. This use 

of variables entails a use of algebraic notation and an understanding of 

the general rules of the operators introduced in arithmetic. 

Unlike abstract algebra, elementary algebra is not concerned 

with algebraic structures outside the realm of real and complex numbers. 

The use of variables to denote quantities allows general relationships 

between quantities to be formally and concisely expressed, and thus 

enables solving a broader scope of problems. Many quantitative 

relationships in science and mathematics are expressed as 

algebraic equations. 

4.8 KEYWORD 

Uniform motion 

Arithmetic 

Operation 
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Operator 

Straightforward 

Ratio 

Proportion 

Fractional 

Algebraic 

Quadratic 

4.8 QUESTIONS FOR REVIEW 

Q.1 Explain Steps for Solving Algebraic Word Problems. 

Q.2 Discuss the use of Parentheses with examples. 

Q.3 What are signed numbers?  

Q.4 Explain Algebraic expression & terms. 
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4.10 ANSWERS TO CHECK YOUR 
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Check in progress -1  

1. Hint: Please refer to section 4.1 
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UNIT - 5 : SEQUENCE AND 

CONVERGENCE  

STRUCTURE 

5.1 Introduction 

5.2 Definition of Limit  

5.3 Squeeze Theorem  

5.4 Sequence and convergence 

5.5Cauchy Sequences 

5.6 Cantor‘s Intersection Theorem 

5.7 Baire Category Theorem 

5.8 Let Sum up  

5.9 Keyword 

5.10 Questions for Review 

5.11 Suggested Reading & Reference  

5.12 Answers to check your progress 

5.1 INTRODUCTION  

Let‘s start off this section with a discussion of just what a sequence is. A 

sequence is nothing more than a list of numbers written in a specific 

order. The list may or may not have an infinite number of terms in them 

although we will be dealing exclusively with infinite sequences in this 

class. General sequence terms are denoted as follows, 

 

Because we will be dealing with infinite sequences each term in the 

sequence will be followed by another term as noted above. In the 

notation above we need to be very careful with the subscripts. The 

subscript of     denotes the next term in the sequence and NOT one 

plus the  th
 term! In other words, 



Notes 

114 

 

So be very careful when writing subscripts to make sure that the ―+1‖ 

This is an easy mistake to make when you first start dealing with this 

kind of thing. 

There is a variety of ways of denoting a sequence. Each of the following 

is equivalent ways of denoting a sequence 

.  

In the second and third notations above an  is usually given by a formula. 

First, note the difference between the second and third notations above. If 

the starting point is not important or is implied in some way by the 

problem it is often not written down as we did in the third notation. Next, 

we used a starting point of    =1 in the third notation only so we could 

write one down. There is absolutely no reason to believe that a sequence 

will start at    =1. A sequence will start where ever it needs to start. 

Example 1 :Write down the first few terms of each of the following 

sequences. 

 

 

To get the first few sequence terms here all we need to do is plug in 

values of n into the formula given and we‘ll get the sequence terms. 
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Note the inclusion of the ―…‖ at the end! This is an important piece of 

notation as it is the only thing that tells us that the sequence continues on 

and doesn‘t terminate at the last term. 

 

This one is similar to the first one. The main difference is that this 

sequence doesn‘t start at n=1. 

 

Note that the terms in this sequence alternate in signs. Sequences of this 

kind are sometimes called alternating sequences. 

 

This sequence is different from the first two in the sense that it doesn‘t 

have a specific formula for each term. However, it does tell us what each 

term should be. Each term should be the n
th

 digit of p. So we know that 

π=3.14159265359… 

The sequence is then, 

{3,1,4,1,5,9,2,6,5,3,5,…} 

In the first two parts of the previous example note that we were really 

treating the formulas as functions that can only have integers plugged 

into them. Or, 
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This is an important idea in the study of sequences (and series). Treating 

the sequence terms as function evaluations will allow us to do many 

things with sequences that we couldn‘t do otherwise. Before delving 

further into this idea however we need to get a couple more ideas out of 

the way. 

First, we want to think about ―graphing‖ a sequence. To graph the 

sequence {a
n
} we plot the points (n,a

n
) as n ranges over all possible 

values on a graph. For instance, let‘s graph the sequence  

 

The first few points on the graph are, 

 

The graph, for the first 30 terms of the sequence, is then, 

 

This graph leads us to an important idea about sequences. Notice that as 

n increases the sequence terms in our sequence, in this case, get closer 

and closer to zero. We then say that zero is the limit (or sometimes the 

limiting value) of the sequence and write, 

 

If you recall, we said earlier that we could think of sequences as 

functions in some way and so this notation shouldn‘t be too surprising. 
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Using the ideas that we developed for limits of functions we can write 

down the following working definition for limits of sequences. 

5.2 DEFINITION OF LIMIT 

We say that  if we can make an as close to L as we want for 

all sufficiently large n.  In other words, the value of the a
n  approach L 

as n approaches infinity. 

We say that if we can make an as large as we want for all 

sufficiently large n. Again, in other words, the value of the a
n
‘s get 

larger and larger without bound as n approaches infinity. 

We say that  if we can make an as large and negative as 

we want for all sufficiently large n. Again, in other words, the value of 

the an‘s are negative and get larger and larger without bound as n 

approaches infinity. 

The working definitions of the various sequence limits are nice in that 

they help us to visualize what the limit actually is. Just like with limits of 

functions however, there is also a precise definition for each of these 

limits. Let‘s give those before proceeding approaches infinity. 

Precise Definition of Limit 

 

Note that both definitions tell us that in order for a limit to exist and have 

a finite value all the sequence terms must be getting closer and closer to 

that finite value as n increases. Now that we have the definitions of the 
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limit of sequences out of the way we have a bit of terminology that we 

need to look at.  If  exists and is finite we say that the sequence 

is convergent. If  doesn‘t exist or is infinite we say the 

sequence diverges. Note that sometimes we will say the sequence 

diverges to  

we will sometimes say that the sequence diverges to −∞. 

Most limits of most sequences can be found using one of the following 

theorems. 

Theorem 1 

 

This theorem is basically telling us that we take the limits of sequences 

much like we take the limit of functions. In fact, in most cases we‘ll not 

even really use this theorem by explicitly writing down a function. We 

will more often just treat the limit as if it were a limit of a function and 

take the limit as we always did back in Calculus I when we were taking 

the limits of functions. 

So, now that we know that taking the limit of a sequence is nearly 

identical to taking the limit of a function we also know that all the 

properties from the limits of functions will also hold. 

Properties 

 

 

T 
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hese properties can be proved using Theorem 1 above and the function 

limit properties we saw in Calculus I or we can prove them directly using 

the precise definition of a limit using nearly identical proofs of the 

function limit properties. 

Next, just as we had a Squeeze Theorem for function limits we also have 

one for sequences and it is pretty much identical to the function limit 

version. 

Squeeze Theorem for Sequences 

 

Note that in this theorem the ―for all n>N for some N‖ is really just 

telling us that we need to have an≤cn≤bn for all sufficiently large n, but if 

it isn‘t true for the first few n that won‘t invalidate the theorem. As we‘ll 

see not all sequences can be written as functions that we can actually take 

the limit of. This will be especially true for sequences that alternate in 

signs. While we can always write these sequence terms as a function we 

simply don‘t know how to take the limit of a function like that. The 

following theorem will help with some of these sequences. 

Theorem 2 

 

Note that in order for this theorem to hold the limit MUST be zero and it 

won‘t work for a sequence whose limit is not zero. This theorem is easy 

enough to prove so let‘s do that. 

Proof of Theorem 2 

The main thing to this proof is to note that, 

 

Then note that, 

  

http://tutorial.math.lamar.edu/Classes/CalcI/LimitsProperties.aspx#Limit_Props
http://tutorial.math.lamar.edu/Classes/CalcI/LimitsProperties.aspx#Limit_Props
http://tutorial.math.lamar.edu/Classes/CalcI/LimitProofs.aspx
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5.3 SQUEEZE THEOREM  

 

 

The next theorem is a useful theorem giving the convergence/divergence 

and value (for when it‘s convergent) of a sequence that arises on 

occasion. 

Theorem 3 

Here is a quick (well not so quick, but definitely simple) partial proof of 

this theorem. 

Partial Proof of Theorem 3 

We‘ll do this by a series of cases although the last case will not be 

completely proven. 

Case 1 : r 1 
 

We know from Calculus I that and so by Theorem 

1 above we also know that  and so the sequence diverges 

if r>1. 

Case 2 : r=1 

In this case we have,  

So, the sequence converges for r=1 and in this case its limit is 1. 

Case 3 : 0<r<1  

We know from Calculus I that  
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and so by Theorem 1 above we also know that 

 

and in this case its limit is zero. 

Case 4 : r=0 

In this case we have,  

So, the sequence converges for r=0 and in this case its limit is zero. 

Case 5 : −1<r<0 

First let‘s note that if −1<r<0 then 0<|r|<1 

then by Case 3 above we have, 

 

Theorem 2 above now tells us that we must also have, 

 

Case 6 : r =−1 

In this case the sequence is,  

 

and hopefully it is clear that  doesn‘t exist. Recall that in order 

of this limit to exist the terms must be approaching a single value as n 

increases. In this case however the terms just alternate between 1 and -1 

and so the limit does not exist. So, the sequence diverges for r = −1 

Case 7 : r <−1 

In this case we‘re not going to go through a complete proof. Let‘s just 

see what happens if we let r = −2 for instance. If we do that the sequence 

becomes, 

 

So, if r = −2 we get a sequence of terms whose values alternate in sign 

and get larger and larger and so  doesn‘t exist. It does not settle 
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down to a single value as n increases nor do the terms ALL approach 

infinity. So, the sequence diverges for r = −2. 

We could do something similar for any value of r such that r<−1 and so 

the sequence diverges for r<−1. 

Let‘s take a look at a couple of examples of limits of sequences. 

Example 2 Determine if the following sequences converge or diverge. If 

the sequence converges determine its limit. 

 

 

In this case all we need to do is recall the method that was developed in 

Calculus I to deal with the limits of rational functions. To do a limit in 

this form all we need to do is factor from the numerator and denominator 

the largest power of n, cancel and then take the limit. 

 

So, the sequence converges and its limit is 
 

 
 

 

We will need to be careful with this one. We will need to use 

L‘Hospital‘s Rule on this sequence. The problem is that L‘Hospital‘s 

Rule only works on functions and not on sequences. Normally this would 

be a problem, but we‘ve got Theorem 1 from above to help us out. Let‘s 

define 

 



Notes 

123 

and note that, 

 

Theorem 1 says that all we need to do is take the limit of the function. 

 

So, the sequence in this part diverges (to ∞). 

More often than not we just do L‘Hospital‘s Rule on the sequence terms 

without first converting to x‘s since the work will be identical regardless 

of whether we use x or n. However, we really should remember that 

technically we can‘t do the derivatives while dealing with sequence 

terms. 

 

We will also need to be careful with this sequence. We might be tempted 

to just say that the limit of the sequence terms is zero (and we‘d be 

correct). However, technically we can‘t take the limit of sequences 

whose terms alternate in sign, because we don‘t know how to do limits of 

functions that exhibit that same behavior. Also, we want to be very 

careful to not rely too much on intuition with these problems. As we will 

see in the next section, and in later sections, our intuition can lead us 

astray in these problems if we aren‘t careful. 

So, let‘s work this one by the book. We will need to use Theorem 2 on 

this problem. To this we‘ll first need to compute, 

 

Therefore, since the limit of the sequence terms with absolute value bars 

on them goes to zero we know by Theorem 2 that, 
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which also means that the sequence converges to a value of zero. 

 

For this theorem note that all we need to do is realize that this is the 

sequence in Theorem 3 above using r = −1. So, by Theorem 3 this 

sequence diverges. 

We now need to give a warning about misusing Theorem 2. Theorem 2 

only works if the limit is zero. If the limit of the absolute value of the 

sequence terms is not zero then the theorem will not hold. The last part 

of the previous example is a good example of this (and in fact this 

warning is the whole reason that part is there). Notice that  

 

and yet,  doesn‘t even exist let alone equal 1. So, be careful 

using this Theorem 2. You must always remember that it only works if 

the limit is zero. 

Theorem 4 

For the sequence {an} if both ,

 

Proof of Theorem 4 

Let ε>0. Then since 
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Likewise, because 

 

Now, let 

 

and so in either case we have that, 

 

Therefore, 

 

CHECK YOUR PROGRESS-1 

 

Q. 1 State and prove Squeez‘s Theorem  

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

Q.2 Define limits and state its properties. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

5.4 SEQUENCE & CONVERGENCE 

Sequences are, basically, countable many numbers arranged in an order 

that may or may not exhibit certain patterns. Here is the formal definition 

of a sequence: 

Definition: Sequence 
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 A sequence of real numbers is a function f: N  R. In other words, a 

sequence can be written as f(1), f(2), f(3), ..... Usually, we will denote 

such a sequence by the symbol  , where aj = f(j). 

For example, the sequence 1, 1/2, 1/3, 1/4, 1/5 ... is written as  . 

Keep in mind that despite the strange notation, a sequence can be thought 

of as an ordinary function. In many cases that may not be the most 

expedient way to look at the situation. It is often easier to simply look at 

a sequence as a 'list' of numbers that may or may not exhibit a certain 

pattern. 

We now want to describe what the long-term behaviour, or pattern, of a 

sequence is, if any. 

Definition: Convergence 

A sequence  of real (or complex) numbers is said to converge to a 

real (or complex) number c if for every ϵ > 0 there is an integer N > 0 

such that if j > N then 

| aj - c | < ϵ 

The number c is called the limit of the sequence and we 

sometimes write aj  c. 

If a sequence does not converge, then we say that it diverges. 

The sequence converges to zero. 

 

 

which seems to indicate that the terms are getting closer and closer to 

zero. According to the definition of convergence, we need to show that 

no matter which ϵ > 0 one chooses, the sequence will eventually become 

smaller than this number. To be precise: take any ϵ > 0. Then there exists 

a positive integer N such that 1 / N < ϵ. Therefore, for any j > N we have: 

| 1/j - 0 | = | 1/j | < 1/N <  
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whenever j>N. But this is precisely the definition of the 

sequence {1/j} converging to zero. 

While it looks like this proof is easy, it is a good indication for ' -

arguments' that will appear again and again. In most of those cases the 

proper choice of N will make it appear as if the proof works like magic. 

The sequence  does not converge. 

 

While this sequence does exhibit a definite pattern, it does not get close 

to any one number, i.e. it does not seem to have a limit. Of course we 

must prove this statement, so we will use a proof by contradiction. 

Suppose that the sequence did converge to a limit L. Then, for = 

1/2 there exists a positive integer N such that 

| (-1) 
n
- L | < 1/2 

for all n > N. But then, for some n > N, we have the inequality: 

2 = | (-1) 
n + 1

 - (-1) 
n
 | = | ((-1) 

n + 1
 - L) + (L - (-1) 

n
 ) | 

       | (-1) 
n + 1

 - L | + | (-1) 
n
 - L | < 1/2 + 1/2 = 1 

for n > N, which is a contradiction since it says that 2 < 1, which is not 

true. 

The sequence  converges to zero. 

{ n / 2
n
 } = { 0, 1/2, 1/2, 3/8, 1/4, 5/32, ...}. It is not clear, but it seems as 

if the terms get smaller and smaller. Indeed this is the case, and we will 

prove it: 

First, we can use induction to show that 

n
2
 2

n
 

for n > 3. But then we have that 

n
2
 / 2

n
  1 

or equivalently 
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n / 2
n
  1/n 

for n > 3. But now you should be able to finish the proof yourself. As a 

hint, for a given , choose 

N = max{3, 1/ } 

Convergent sequences, in other words, exhibit the behavior that they get 

closer and closer to a particular number. Note, however, that divergent 

sequence can also have a regular pattern, as in the second example 

above. But it is convergent sequences that will be particularly useful to 

us right now. 

We are going to establish several properties of convergent sequences, 

most of which are probably familiar to you. Many proofs will use an '

 argument' as in the proof of the next result. This type of argument is 

not easy to get used to, but it will appear again and again, so that you 

should try to get as familiar with it as you can. 

Convergent Sequences are bounded 

Let  be a convergent sequence. Then the sequence is 
bounded, and the limit is unique. 

  

Proof: 

Let's prove uniqueness first. Suppose the sequence has two 

limits, a and a'. Take any  > 0. Then there is an integer N such that: 

| aj - a | <  

if j > N. Also, there is another integer N' such that 

| aj - a' | <  

if j > N'. Then, by the triangle inequality: 

| a - a' | = | a - aj + aj - a' | 

       |aj - a | + | aj - a' | 

      <  +  = 2  

if j > max{N,N'}. Hence | a - a' | < 2  for any  > 0. But that implies 

that a = a', so that the limit is indeed unique. 

Next, we prove boundedness. Since the sequence converges, we can take, 

for example,  = 1. Then 

| aj - a | < 1 
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if j > N. Fix that number N. We have that 

| aj |  | aj - a | + | a | < 1 + |a| 

for all j > N. Define 

M = max{|a1|, |a2|, ...., |aN|, (1 + |a|)} 

Then | aj | < M for all j, i.e. the sequence is bounded as required. 

Example : 

The Fibonacci numbers are recursively defined as x1 = 1, x2 = 1, and 

for all n > 2 we set xn = xn - 2 + xn - 1. The sequence of Fibonacci 

numbers {1, 1, 2, 3, 5 ...} does not converge. 

 

We will show by induction that the sequence of Fibonacci numbers is 

unbounded. If that is true, then the sequence cannot converge, because 

every convergent sequence must be bounded. 

As for the induction process: The first terms of the Fibonacci numbers 

are 

{1, 1, 2, 3, 5, 8, 13, 21 ...} 

We will show that the nth term of that sequence is greater or equal to n, 

at least for n > 4. 

Property Q(n): 

xn  n for all n > 4 

Check Q(5) (the lowest term): 

x5 = x4 + x3 = 3 + 2 = 5  5 is true. 

Assume Q(n) true: 

xn  n for all n > 4 

Check Q(n+1): 

xn + 1 = xn + xn - 1  n + xn - 1  n + 1  n 

Hence, by induction the Fibonacci numbers are unbounded and the 

sequence cannot converge. 

Convergent sequences can be manipulated on a term by term basis, just 

as one would expect: 

Algebra on Convergent Sequences 
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Suppose  and  are converging to a and b, respectively. 

Then 

1. Their sum is convergent to a + b, and the sequences can be 

added term by term. 

2. Their product is convergent to a * b, and the sequences can be 

multiplied term by term. 

3. Their quotient is convergent to a / b, provide that b # 0, and 

the sequences can be divided term by term (if the 

denominators are not zero). 

4. If an  bn for all n, then a  b 

The proofs of these statements involve the triangle inequality, as well as 

an occasional trick of adding and subtracting zero, in a suitable form. A 

proof of the first statement, for example, goes as follows. 

Take any  > 0. We know that an  a, which implies that there exists an 

integer N1 such that 

| an - a | <  / 2 

if n > N1. Similarly, since bn  b there exists another integer N2 such 

that 

| bn - b | <  / 2 

if n > N2. But then we know that 

| (an + bn) - (a + b) | = | (an - a) + (bn - b) | 

       | an - a | + | bn - b | 

      <  /2 +  /2 =  

if n > max(N1, N2), which proves the first statement. 

Proving the second statement is similar, with some added tricks. We 

know that { bn } converges, therefore there exists an integer N1 such that 

| bn | < |b| + 1 

if n > N1. We also know that we can find integers N2 and N3 so that 

| an - a | <  / (|b| + 1) 

if n > N2, and 
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| bn - b | <  / (|a| + 1) 

if n > N3, because |a| and |b| are some fixed numbers. But then we have: 

| an bn - a b | = | an bn - a bn + a bn - a b | 

      = | bn(an - a) + a (bn - b) | 

       | bn| |an - a | + | a | | bn - b | 

      < (| b | + 1)  / (|b| + 1) + | a |  / (|a| +1) < 2  

If n > max(N1, N2, N3), which proves the second statement. 

The proof of the third statement is similar, so we will leave it as an 

exercise. 

The last statement does require a new trick: we will use a proof by 

contradiction to get that result: 

Assume that an  bn for all n, but a > b. 

We now need to work out the contradiction: the idea is that since a > 

b there is some number c such that b < c < a. 

  

<----------[b]-------[a]-------->  

  

<----------[b]--[c]--[a]-------->  

Since an converges to a, we can make the terms of the sequence fall 

between c and a, and the terms of bn between b and c. But then we no 

longer have that an  bn, which is our contradiction. Now let's formalize 

this idea: 

Let c = (a + b)/2. Then clearly b < c < a (verify!). Choose N1 such 

that bn < c if n > N1. That works because b < c. Also choose N2 such 

that an > c if n > N2. But now we have that 

bn < c < an 

for n > max(N1, N2). That is a contradiction to the original assumption 

that an  bn for all n. Hence it cannot be true that a > b, so that the 

statement is indeed proved. 
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This theorem states exactly what you would expect to be true. The proof 

of it employs the standard trick of 'adding zero' and using the triangle 

inequality. Try to prove it on your own before looking it up. 

Note that the fourth statement is no longer true for strict inequalities. In 

other words, there are convergent sequences with an < bn for all n, but 

strict inequality is no longer true for their limits.  

While we now know how to deal with convergent sequences, we still 

need an easy criterion that will tell us whether a sequence converges. The 

next proposition gives reasonable easy conditions, but will not tell us the 

actual limit of the convergent sequence. 

First, recall the following definitions: 

Monotonicity: 

A sequence  is called monotone increasing if aj + 1  aj for all j. 

A sequence  is called monotone decreasing if aj  aj + 1 for all j. 

In other words, if every next member of a sequence is larger than the 

previous one, the sequence is growing or monotone increasing. If the 

next element is smaller than each previous one, the sequence is 

decreasing. While this condition is easy to understand, there are 

equivalent conditions that are often easier to check: 

 Monotone increasing: 

1. aj + 1  aj 

2. aj + 1 - aj  0 

3. aj + 1 / aj  1, if aj > 0 

 Monotone decreasing: 

1. aj + 1  aj 

2. aj + 1 - aj  0 

3. aj + 1 / aj  1, if aj > 0 

Examples: 
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Is the sequence monotone increasing or decreasing? 

 

One can start to investigate this statement without having to suspect the 

correct answer. We will simply compare the quotient of two consecutive 

terms to check whether the answer is greater or less than one: 

(1/n) / (1/ (n+1) ) = (n+1) / n > 1 

Hence, the n-th term of the sequence divided by the (n+1) term is always 

greater than 1, or, in other words, the n-th term is greater than the (n+1)-

th term. 

That is the definition of a decreasing sequence so that the sequence is 

decreasing. Checking a graphical representation of this sequence 

confirms that. 

Is the sequence monotone increasing or decreasing ? 

 

We will again not guess what the correct answer might be ahead of time. 

We will instead look at the difference between two consecutive terms 

and see if that comes out greater or less than zero. 

 

This means that the n-th term minus the (n+1)-th term of the sequence is 

less than 0, so that the n-th term is less than then (n+1)-th term. 

That means, by definition, that the sequence is increasing. Checking a 

graphical representation of this sequence confirms that. 

Is it true that a bounded sequence converges ? How about monotone 

increasing sequences ? 

 

Both statements are false. As a counter-example to the first statement, 

consider the sequence 

{ (-1) 
j
 } 
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Each term of this sequence is bounded by -1 or +1, so that the sequence 

is indeed bounded. But, as we have seen before, the sequence does not 

converge. 

As for the second statement, consider the simple sequence {n}, i.e. the 

sequence consisting of the numbers {1, 2, 3, 4, ...}. It is obviously 

increasing, but does not converge to a finite number. 

It does, however, get closer and closer to infinity, but we do not, at this 

time, consider this convergent 

Here is a very useful theorem to establish convergence of a given 

sequence (without, however, revealing the limit of the sequence): First, 

we have to apply our concepts of supremum and infimum to sequences: 

 If a sequence  is bounded above, then c = sup(xk) is finite. 

Moreover, given any  > 0, there exists at least one 

integer k such that xk > c - , as illustrated in the picture. 

 

 If a sequence  is bounded below, then c = inf(xk) is finite. 

Moreover, given any  > 0, there exists at least one integer k such 

that xk < c + , as illustrated in the picture. 

 

 

Proposition: Monotone Sequences 

If is a monotone increasing sequence that is bounded above, then 

the sequence must converge. 
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If is a monotone decreasing sequence that is bounded below, then 

the sequence must converge. 

 

 

Let's look at the first statement, i.e. the sequence in monotone increasing. 

Take an  > 0 and let c = sup(xk). Then c is finite, and given  > 0, there 

exists at least one integer N such that xN > c - . Since the sequence is 

monotone increasing, we then have that 

xk > c -  

for all k > N, or 

| c - xk | <  

for all k > N. But that means, by definition, that the sequence converges 

to c. 

The proof for the infimum is very similar, and is left as an exercise. 

Using this result it is often easy to prove convergence of a sequence just 

by showing that it is bounded and monotone. The downside is that this 

method will not reveal the actual limit, just prove that there is one. 

 

Example: 

The sequences  and  both converge. 

First, let us consider the sequence . It is decreasing because: 

( 1/n ) - (1 / (n+1) ) > 0 
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Also, the sequence is bounded below by 0, because each term is positive. 

Hence, the sequence must converge. 

Note that this does not tell us the actual limit. But we have proved before 

that this sequence converges to 0. 

Next, we consider the sequence . This sequence is increasing 

because 

n / (n+1) - (n+1) / (n + 2) < 0 

The sequence is also bounded above by 1, because n < n + 1 so that 

n / (n + 1) < 1 

Hence, the sequence must converge. 

Note that this does not tell us what the limit of the sequence is. However, 

the limit is equal to 1, as you can easily prove yourself. 

Define x1 = b and let xn = xn - 1 / 2 for all n > 1. Then this sequence 

converges for any number b. 

The proof is very easy using the theorem on monotone, bounded 

sequences: 

 b > 0: the sequence is decreasing and bounded below by 0. 

 b < 0: the sequence is increasing and bounded above by 0 

 b = 0: the sequence is constantly equal to zero 

In either case the sequence converges. As to finding the actual limit, we 

proceed as follows: we already know that the limit exists. Call that 

limit L. Then we have: 

lim xn = L = lim xn + 1 

But then we have that 

L = lim xn + 1 = lim xn / 2 = 1/2 lim xn = 1/2 L 

so that we have the equation for the unknown limit L: 

L = 1/2 L 

Therefore, the limit must be zero. 
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This proof illustrates the advantage of knowing that a sequence 

converges. Based on that fact it was easy to determine the actual limit of 

this recursively defined sequence. On the other hand, it would be very 

difficult to try to establish convergence based on the original definition 

of a convergent sequence 

Examples: Computing Square Roots 

Let a > 0 and x0 > 0 and define the recursive sequence 

xn+1 = 
1
/2 (xn + 

a
 / xn) 

Show that this sequence converges to the square root of a regardless 

of the starting point x0 > 0. 

 

Before giving the proof, let's see how this recursive sequence can be used 

to compute a square root very efficiently. Let's say we want to 

compute . Let's start with x0 = 2. Note that the 'true' value of  with 

12 digits after the period is 1.414213562373. Our recursive sequence 

would approximate this value quickly as follows: 

Term Exact Value 
Approximate 

Value 

x0 2 
 

x1 = 
1
/2 (x0 + 

a
 / x0) 

1
/2 (2 + 

2
/2) = 

3
/2 1.5 

x2 = 
1
/2 (x1 + 

a
 / x1) 

1
/2 (

3
/2 + 

2
/3/2) = 

17
/12 1.416666667 

x3 = 
1
/2 (x2 + 

a
 / x2) 

1
/2 (

17
/12 + 

2
/17/12) = 

577
/408 1.414215686 

x4 = 
1
/2 (x3 + 

a
 / x3) 

1
/2 (

577
/408 + 

2
/577/408) 

= 
665857

/470832 
1.414213562375 

After only 4 steps our sequence has approximated the 'true' value 

of  with 11 digits accuracy. 

Now that we have seen the usefulness of this particular recursive 

sequence we need to prove that it really does converge to the square root 

of a. 

First, note that xn > 0 for all n so that the sequence is bounded below. 
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Next, let's see if the sequence is monotone decreasing, in which case it 

would have to converge to some limit. Compute 

xn - xn+1 = xn - 
1
/2 (xn + 

a
 / xn) = 

1
/2 (xn

2
 - a) / xn 

Now let's take a look at xn
2
 - a: 

xn
2
 - a = 

1
/4 (xn-1 + 

a
 / xn-1)

2
 - a 

      = 
1
/4 xn-1

2
 + 

1
/2 a + 

1
/4 a

2
 / xn-1

2
 - a 

      = 
1
/4 xn-1

2
 - 

1
/2 a + 

1
/4 a

2
 / xn-1

2
 

      = 
1
/4 (xn-1 - 

a
 / xn-1)

2
 

       0 

But that means that xn - xn+1  0, or equivalently xn  xn+1. Hence, the 

sequence is monotone decreasing and bounded below by 0 so it must 

converge. 

We now know that xn = L. To find that limit, we could try the 

following: 

(*) L = xn = xn+1 = 
1
/2 (xn + 

a
/xn) = 

1
/2 (L + a / L) 

Solving the equation L = 
1
/2 (L + a / L) gives 

2 L
2
 = L

2
 + a 

or equivalently 

L
2
 = a 

which means that the limit L is indeed the square root of a, as required. 

However, our proof contains one small caveat. In order to take the limit 

inside the fraction in equation (*) we need to know that L is not 

zero before we can write down equation (*). We already know that xn is 

bounded below by zero, but that is not good enough to exclude the 

possibility of L = 0. But we have already shown that 

xn
2
 - a = 

1
/4 (xn-1 - 

a
 / xn-1)

2
  0 

so that xn
2
  a. That implies that the limit of the sequence (which we 

already know exists) is strictly positive since a > 0. Therefore equation 

(*) is justified and we have completed the proof. 
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There is one more simple but useful theorem that can be used to find a 

limit if comparable limits are known. The theorem states that if a 

sequence is pinched in between two convergent sequences that converge 

to the same limit, then the sequence in between must also converge to the 

same limit. 

Theorem: The Pinching Theorem 

Suppose {aj} and {cj} are two convergent sequences such 
that lim aj = lim cj = L. If a sequence {bj} has the property 
that 
aj  bj  cj 
for all j, then the sequence {bj} converges and lim bj = L. 

 

Proof: 

The statement of the theorem is easiest to memorize by looking at a 

diagram: 

 

All bj are between aj and cj, and since aj and cj converge to the same 

limit L the bj have no choice but to also converge to L. 

Of course this is not a formal proof, so here we go: we want to show that 

given any  > 0 there exists an integer N such that | bj - L | <  if j > N. 

We know that 

aj  bj  cj 

Subtracting L from these inequalities gives: 

aj - L  bj - L  cj - L 

But there exists an integer N1 such that | aj - L | <  or equivalently 

-  < aj - L <  

and another integer N2 such that | cj - L | <  or equivalently 

-  < cj - L <  

if j > max(N1, N2). Taking these inequalities together we get: 

-  < aj - L  bj - L  cj - L <  

But that means that 

-  < bj - L <  
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or equivalently | bj - L | <  as long as j > max(N1, N2). But that means 

that {bj} converges to L, as required. 

Examples  

Show that the sequence sin(n) / n and cos(n) / n both 
converge to zero. 

 

This might seem difficult because trig functions such as sin and cos are 

often tricky. However, using the Pinching theorem the proof will be very 

easy. 

We know that | sin(x) |  1 for all x. Therefore 

-1  sin(n)  1 

for all n. But then we also know that: 

-1/n  sin(n)/n  1/n 

The sequences {1/n} and -1/n both converge to zero so that the Pinching 

theorem applies and the term in the middle must also converge to zero. 

To prove the statement involving the cos is similar and left as an 

exercise. 

5.5 CAUCHY SEQUENCES 

What is slightly annoying for the mathematician (in theory and in praxis) 

is that we refer to the limit of a sequence in the definition of a convergent 

sequence when that limit may not be known at all. In fact, more often 

than not it is quite hard to determine the actual limit of a sequence. 

We would prefer to have a definition which only includes the known 

elements of the particular sequence in question and does not rely on the 

unknown limit. Therefore, we will introduce the following definition: 

Definition: Cauchy Sequence 

Let  be a sequence of real (or complex) numbers. We say that the 

sequence satisfies the Cauchy criterion (or simply is Cauchy) if for 

each  > 0 there is an integer N > 0 such that if j, k > N then 
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| aj - ak | <  

This definition states precisely what it means for the elements of a 

sequence to get closer together, and to stay close together. Of course, we 

want to know what the relation between Cauchy sequences and 

convergent sequences is. 

Theorem: Completeness Theorem in R 

Let  be a Cauchy sequence of real numbers. Then the 
sequence is bounded. 

Let  be a sequence of real numbers. The sequence is 
Cauchy if and only if it converges to some limit a. 

Proof: 

The proof of the first statement follows closely the proof of the 

corresponding result for convergent sequences. Can you do it ? 

To prove the second, more important statement, we have to prove two 

parts: 

First, assume that the sequence converges to some limit a. Take any  > 

0. There exists an integer N such that if j > N then | aj - a | <  /2. 

Hence: 

| aj - ak |  | aj - a | + | a - ak| < 2  / 2 =  

if j, k > N. Thus, the sequence is Cauchy. 

Second, assume that the sequence is Cauchy (this direction is much 

harder). Define the set 

S = {x  R: x < aj for all j except for finitely many} 

Since the sequence is bounded (by part one of the theorem), say by a 

constant M, we know that every term in the sequence is bigger than -M. 

Therefore -M is contained in S. Also, every term of the sequence is 

smaller than M, so that S is bounded by M. Hence, S is a non-empty, 
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bounded subset of the real numbers, and by the least upper bound 

property it has a well-defined, unique least upper bound. Let 

a = sup(S) 

We will now show that this a is indeed the limit of the sequence. Take 

any  > 0 , and choose an integer N > 0 such that 

| aj - ak | <  / 2 

if j, k > N. In particular, we have: 

| aj - aN + 1 | <  / 2 

if j > N, or equivalently 

-  / 2 < aj - aN + 1 <  / 2 

Hence we have: 

aj > aN + 1 -  / 2 

for j > N. Thus, aN + 1 -  / 2 is in the set S, and we have that 

a  aN + 1 -  / 2 

It also follows that 

aj < aN + 1 +  / 2 

for j > N. Thus, aN + 1 +  / 2 is not in the set S, and therefore 

a  aN + 1 +  / 2 

But now, combining the last several line, we have that: 

|a - aN + 1 | <  / 2 

and together with the above that results in the following: 

| a - aj | < |a - aN + 1 | + | aN + 1 - aj | < 2  / 2 =  

for any j > N. 

Thus, by considering Cauchy sequences instead of convergent sequences 

we do not need to refer to the unknown limit of a sequence, and in effect 

both concepts are the same. 

Note that the Completeness Theorem not true if we consider only 

rational numbers. For example, the sequence 1, 1.4, 1.41, 1.414, ... 

(convergent to the square root of 2) is Cauchy, but does not converge to a 

rational number. Therefore, the rational numbers are not complete, in the 

sense that not every Cauchy sequence of rational numbers converges to a 

rational number. 
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Hence, the proof will have to use that property which distinguishes the 

reals from the rationals: the least upper bound property. 

Subsequences 

So far we have learned the basic definitions of a sequence (a function 

from the natural numbers to the Reals), the concept of convergence, and 

we have extended that concept to one which does not pre-suppose the 

unknown limit of a sequence (Cauchy sequence). 

Unfortunately, however, not all sequences converge. We will now 

introduce some techniques for dealing with those sequences. The first is 

to change the sequence into a convergent one (extract subsequences) and 

the second is to modify our concept of limit (lim sup and lim inf). 

Definition: Subsequence 

Let  be a sequence. When we extract from this sequence only 

certain elements and drop the remaining ones we obtain a new sequences 

consisting of an infinite subset of the original sequence. That sequence is 

called a subsequence and denoted by  

One can extract infinitely many subsequences from any given sequence. 

Examples: 

Take the sequence . Extract every other member, starting with 

the first. Then do the same, starting with the second. 

 

The sequence in question is 

 = {-1, 1, -1, 1, -1, 1, ...} 

If we extract every second number, starting with the first, we get: 

{-1, -1, -1, -1, ...} 

This subsequence now converges to -1. 

If we extract every second number, starting with the second, we get: 

{1, 1, 1, 1, 1, ...} 
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This subsequence now converges to 1. 

Take the sequence . Extract three different subsequences of 

your choice and look at the convergence behavior of these 

subsequences. 

 

The sequence in question is: 

 = {1, 1/2, 1/3, 1/4, 1/5, 1/6, ... } 

which converges to zero. Now let us extract some subsequences: 

Extracting the even terms yields the subsequence 

{1/2, 1/4, 1/6, 1/8, 1/10, ...} 

which converges to zero (prove it !). 

Extracting the odd terms yields the subsequence 

{1, 1/3, 1/5, 1/7, 1/9, ...} 

which converges to zero (prove it !). 

Extracting every third member yields the sequence 

{1, 1/4, 1/7, 1/10, 1/13, ...} 

which converges to zero (prove it !). 

Hence, all three subsequences converge to zero. This is an illustration of 

a general result: if a sequence converges to a limit L then every 

subsequence extracted from it will also converge to that limit L. 

The last example is an indication of a general result: 

Proposition 3.3.3: Subsequences from Convergent Sequence 

If is a convergent sequence, then every subsequence of that 

sequence converges to the same limit 
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If  is a sequence such that every possible subsequence 
extracted from that sequences converge to the same limit, 
then the original sequence also converges to that limit. 

Proof: 

The first statement is easy to prove: Suppose the original 

sequence {aj} converges to some limit L. Take any sequence nj of the 

natural numbers and consider the corresponding subsequence of the 

original sequence. For any  > 0 there exists an integer N such that 

| an - L | <  

as long as n > N. But then we also have the same inequality for the 

subsequence as long as nj > N. Therefore any subsequence must 

converge to the same limit L. 

The second statement is just as easy. Suppose {aj} is a sequence such that 

every subsequence extracted from it converges to the same limit L. Now 

take any  > 0. Extract from the original sequence every other element, 

starting with the first. The resulting subsequence converges to L by 

assumption, i.e. there exists an integer N such that 

| aj - L | <  

where j is odd and j > N. Now extract every other element, starting with 

the second. The resulting subsequence again converges to L, so that 

| aj - L | <  

where j is even and j > N. But now we take any j, even or odd, and 

assume that j > N 

 if j is odd, then | aj - L | <  because aj is part of the first 

subsequence 

 if j is even, then | aj - L | <  because aj is part of the second 

subsequence 

Hence, the original sequence must also converge to L. 

Note that we can see from the proof that if the "even" and "odd" 

subsequence of a sequence converge to the same limit L, then the full 

sequence must also converge to L. It is not enough to just say that the 
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"even" and "odd" subsequence simply converge, they must converge to 

the same limit. 

The next statement is probably one on the most fundamental results of 

basic real analysis, and generalizes the above proposition. It also explains 

why subsequences can be useful, even if the original sequence does not 

converge. 

Theorem: Bolzano-Weierstrass 

Let  be a sequence of real numbers that is bounded. 

Then there exists a subsequence  that converges. 
 
Proof: 

Since the sequence is bounded, there exists a number M such that | aj | < 

M for all j. Then: 

either [-M, 0] or [0, M] contains infinitely many elements of the 

sequence 

Say that [0, M] does. Choose one of them, and call it  

either [0, M/2] or [M/2, M] contains infinitely many elements of the 

(original) sequence. 

Say it is [0, M/2]. Choose one of them, and call it  

either [0, M/4] or [M/4, M/2] contains infinitely many elements of the 

(original) sequence 

This time, say it is [M/4, M/2]. Pick one of them and call it  

Keep on going in this way, halving each interval from the previous step 

at the next step, and choosing one element from that new interval. Here 

is what we get: 

 |  - | < M, because both are in [0, M] 

 |  - | < M / 2, because both are in [0, M/2] 

 |  - | < M / 4, because both are in [M/2, M/4] 

and in general, we see that 

|  - | < M / 2
k-1

 



Notes 

147 

because both are in an interval of length M / 2
k-1

. So, this proves that 

consecutive elements of this subsequence are close together. That is not 

enough, however, to say that the sequence is Cauchy, since for that not 

only consecutive elements must be close together, but all elements must 

get close to each other eventually. 

So: take any  > 0, and pick an integer N such that ???...??? (This trick is 

often used: first, do some calculation, then decide what the best choice 

for N should be. Right now, we have no way of knowing a good choice). 

Pretending, however, that we knew this choice of N, we continue the 

proof. For any k, m > N (with m > k) we have: 

 

       

       

       

       

       

Now we can see the choice for N: we want to make is so large, such that 

whenever k, m > N, the difference between the members of the 

subsequence is less than the prescribed . What is therefore the right 

choice for N to finish the proof? 

Example:  

The sequence  does not converge, but we can extract a 

convergent subsequence. 

 

Since | sin(x) | < 4, the sequence is clearly bounded above and below 

(the sequence is also, of course, bounded by 1). 
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Therefore, using the Bolzano-Weierstrass theorem, there exists a 

convergent subsequence. 

However, it is nearly impossible to actually list this subsequence. The 

Bolzano-Weierstrass theorem does guaranty the existence of that 

subsequence, but says nothing about how to obtain it. 

The original sequence { sin(j) }, incidentally, does not converge. The 

proof of this is not so easy, but if we assume that the second part of this 

example has been proved, it would be easy. Remember that the second 

part of this example states that given any number L with |L| < 1 there 

exists a subsequence of  that converges to L. If that was true 

the original sequence cannot converge, because otherwise all its 

subsequences would have to converge to the same limit. 

Of course this proof is only valid if this - more complicated - statement 

can be proved. 

5.6 CANTOR’S INTERSECTION 

THEOREM 

Cantor's intersection theorem refers to two closely related theorems in 

general topology and real analysis, named after Georg Cantor, about 

intersections of decreasing nested sequences of non-empty compact sets. 

Statement for Real Numbers 

The theorem in real analysis draws the same conclusion for closed and 

bounded subsets of the set of real numbers ℝ. It states that a decreasing 

nested sequence (Ck) of non-empty, closed and bounded subsets of ℝ  

has a non-empty intersection. 

 

This version follows from the general topological statement in light of 

the Heine–Borel theorem, which states that sets of real numbers are 

compact if and only if they are closed and bounded. However, it is 

typically used as a lemma in proving said theorem, and therefore 

warrants a separate proof. 
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As an example, if , the intersection over Ck is {0}. On the 

other hand, both the sequence of open bounded sets   and 

the sequence of unbounded closed sets have empty 

intersection. All these sequences are properly nested. 

 

This version of the theorem generalizes toℝ, the set of n-element vectors 

of real numbersℝn, but does not generalize to arbitrary metric spaces. For 

example, in the space of rational numbers, the sets  

 

are closed and bounded, but their intersection is empty. 

 

Note that this contradicts neither the topological statement, as the sets Ck  

are not compact, nor the variant below, as the rational numbers are not 

complete with respect to the usual metric. 

A simple corollary of the theorem is that the Cantor set is nonempty, 

since it is defined as the intersection of a decreasing nested sequence of 

sets, each of which is defined as the union of a finite number of closed 

intervals; hence each of these sets is non-empty, closed, and bounded. In 

fact, the Cantor set contains uncountably many points. 

 

Theorem. Let  Ck be a family of non-empty, closed, and bounded subsets 

of ℝ satisfying 

 

 

Each nonempty, closed, and bounded subset   admits a minimal 

element . Since for each k, we have 
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so  is an increasing sequence contained in the bounded set C0. The 

monotone convergence theorem for bounded sequences of real numbers 

now guarantees the existence of a limit point 

 

and x is limit 

point it follows that  Our choice of k was arbitrary, hence x 

belongs to and the proof is complete. 

 

Variant in complete metric spaces 

In a complete metric space, the following variant of Cantor's intersection 

theorem holds. 

 

Theorem: Suppose that X is a complete metric space, and Ck is a 

sequence of non-empty closed nested subsets of X whose diameters tend 

to zero: 

 

A proof goes as follows. Since the diameters tend to zero, the diameter of 

the intersection of the Ck  is zero, so it is either empty or consists of a 

single point. So it is sufficient to show that it is not empty. Pick an 

element for each k. Since the diameter of Ck tends to zero and 

the Ck are nested, the form a Cauchy sequence. Since the metric space 

is complete this Cauchy sequence converges to some point x. Since each 

Ck is closed, and x is a limit of a sequence in Ck, x must lie in Ck. This is 

true for every k, and therefore the intersection of the Ck must contain x. 

A converse to this theorem is also true: if X is a metric space with the 

property that the intersection of any nested family of non-empty closed 
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subsets whose diameters tend to zero is non-empty, then X is a complete 

metric space. 

5.7 BAIRE CATEGORY THEOREM 

The Baire category theorem (BCT) is an important result in general 

topology and functional analysis. The theorem has two forms, each of 

which gives sufficient conditions for a topological space to be a Baire 

space  

Statement of the theorem 

A Baire space is a topological space with the following property: for 

each countable collection of open dense sets  their intersection 

 is dense. 

 

(BCT1) Every complete metric space is a Baire space. Thus every 

completely metrizable topological space is a Baire space. More 

generally, every topological space that is homeomorphic to an open 

subset of a complete pseudometric space is a Baire space. 

(BCT2) Every locally compact Hausdorff space is a Baire space. The 

proof is similar to the preceding statement; the finite intersection 

property takes the role played by completeness. 

Neither of these statements directly implies the other, since there are 

complete metric spaces that are not locally compact, and there are locally 

compact Hausdorff spaces that are not metrizable . 

(BCT3) A non-empty complete metric space, or any of its subsets with 

nonempty interior, is not the countable union of nowhere-dense sets. 

 

Relation to the axiom of choice 

The proof of BCT1 for arbitrary complete metric spaces requires some 

form of the axiom of choice; and in fact BCT1 is equivalent over ZF to a 

weak form of the axiom of choice called the axiom of dependent choices. 

A restricted form of the Baire category theorem, in which the complete 

metric space is also assumed to be separable, is provable in ZF with no 

additional choice principles. This restricted form applies in particular to 
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the real line, the Baire space ωω, the Cantor space 2ω, and a separable 

Hilbert space such as L2(Rn) 

 

Uses of the theorem 

BCT1 is used in functional analysis to prove the open mapping theorem, 

the closed graph theorem and the uniform boundedness principle. 

 

BCT1 also shows that every complete metric space with no isolated 

points is uncountable. (If X is a countable complete metric space with no 

isolated points, then each singleton {x} in X is nowhere dense, and so X 

is of first category in itself.) In particular, this proves that the set of all 

real numbers is uncountable. 

 

BCT1 shows that each of the following is a Baire space: 

 The space ℝ  of real numbers 

 The irrational numbers, with the metric defined by  

where n is the first index for which the continued fraction 

expansions of x and y differ (this is a complete metric space) 

 The Cantor set 

 

By BCT2, every finite-dimensional Hausdorff manifold is a Baire space, 

since it is locally compact and Hausdorff. This is so even for non-

paracompact (hence nonmetrizable) manifolds such as the long line. 

 

BCT is used to prove Hartogs's theorem, a fundamental result in the 

theory of several complex variables. 

Proof: 

The following is a standard proof that a complete pseudometric space X 

is a Baire space. 

Let  be a countable collection of open dense subsets. We want to 

show that the intersection  A subset is dense if and only if every 

nonempty open subset intersects it. Thus, to show that the intersection is 

dense, it is sufficient to show that any nonempty open set W in  X has a 
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point x in common with all of the . Since U1 is dense, W intersects 

U1; thus, there is a point   

 

denote an open and closed ball, respectively, centered at x with radius r. 

is dense, we can continue recursively to find a pair of sequences 

 

 

Since we have that X
n
 is Cauchy, 

and hence X
n
 converges to some limit x by completeness. For any n 

 

5.8LET SUM UP 

In this unit, we have covered the following points: 

We defined a sequence in a metric space (X, d) and discussed its 

Convergence. We defined subsequence‘s of a sequence and have shown 

the relationship between convergence of a sequence and its 

subsequence‘s. 

We defined Cauchy sequences and explained the connection between 

Cauchy sequences & convergence. A Cauchy sequence is convergent if 

and only if it has a convergent subsequence. 

 We discussed two important theorems and explained the importance of 

them.1) Cantor's Intersection Theorem 2) Baire Category Theorem 

5.9 KEYWORD 

Cauchy Sequence 

Sub Sequence 

Baire Category 

5.10 QUESTIONS FOR REVIEW 

Q. 1 State and prove Baire‘s Category Theorem. 
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Q. 2 State and prove Cantor‘s Intersection Theorem. 

Q. 3 Prove with example subsequence of a sequence. 

Q. 4 State and prove Squeez‘s theorem.  
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5.12 ANSWERS TO CHECK YOUR 

PROGRESS 

Check in progress -1  

1 Check section 5.3  

2 Check section 5.2 
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UNIT - 6 : LEBESGUE MEASURE                 

STRUCTURE 

6.1 Introduction 

6.2 Lebesque Measure Properties 

6.3 Null Sets 

6.4 Construction of the Lebesgue Measure 

    6.4.1 Relation to the Other Measure 

    6.4.2 Lebesque Density‘s Theorem 

    6.4.3 Liouville‘s Number 

    6.4.4 The Existence of Liouville‘s Number 

    6.4.5 Irrationality 

   6. 4.6 Uncountability 

   6. 4.7 Lioville‘s Number and Measure 

6.5 Main Theorem of Lebesque Measure 

    6.5.1 Lebesque Outer Measure 

    6.5.2 The Geomettery Of Interval 

    6.5.3 Heine Boral Theorem 

6.6 Lets sum up 

6.7 Keyword 

6.8 Question Review  

6.9 Suggested Readings & References 

6.10 Answer to check your progress 

6.1 INTRODUCTION  

In measure theory, the Lebesgue measure, named 

after French mathematician Henri Lebesgue, is the standard way of 

assigning a measure to subsets of n-dimensional Euclidean space. For n = 

1, 2, or 3, it coincides with the standard measure of length, area, 

or volume. In general, it is also called n-dimensional volume, n-

https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Henri_Lebesgue
https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Length
https://en.wikipedia.org/wiki/Area
https://en.wikipedia.org/wiki/Volume
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volume, or simply volume. It is used throughout real analysis, in 

particular to define Lebesgue integration. Sets that can be assigned a 

Lebesgue measure are called Lebesgue-measurable; the measure of the 

Lebesgue-measurable set A is here denoted by λ(A). 

Henri Lebesgue described this measure in the year 1901, followed the 

next year by his description of the Lebesgue integral. Both were 

published as part of his dissertation in 1902.  

The Lebesgue measure is often denoted by dx, but this should not be 

confused with the distinct notion of a volume form.  

Definition 

Given a subset E ⊆ℝ , with the length of interval I = ⌈   ⌉ (or I =        

given by ℓ(I)    , the Lebesgue outer measure        is defined as 

 

The Lebesgue measure is defined on the Lebesgue σ-algebra, which is 

the collection of all sets E which satisfy the "Carathéodory criterion" 

which requires that for every A ⊆ℝ , 

 

For any set in the Lebesgue σ-algebra, its Lebesgue measure is given by 

its Lebesgue outer measure λ         . 

Sets that are not included in the Lebesgue σ-algebra are not Lebesgue-

measurable. Such sets do exist (e.g. Vitali sets), i.e., the Lebesgue σ-

algebra is strictly contained in the power set of ℝ. 

Intuition 

The first part of the definition states that the subset E  of the real 

numbers is reduced to its outer measure by coverage by sets of open 

intervals. Each of these sets of intervals I covers E in the sense that when 

the intervals are combined together by union, they contain E. The total 

length of any covering interval set can easily overestimate the measure 

of E, because E is a subset of the union of the intervals, and so the 

intervals may include points which are not in  E. The Lebesgue outer 

measure emerges as the greatest lower bound (infimum) of the lengths 

https://en.wikipedia.org/wiki/Real_analysis
https://en.wikipedia.org/wiki/Lebesgue_integration
https://en.wikipedia.org/wiki/Lebesgue_integral
https://en.wikipedia.org/wiki/Volume_form
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from among all possible such sets. Intuitively, it is the total length of 

those interval sets which fit E most tightly and do not overlap. 

That characterizes the Lebesgue outer measure. Whether this outer 

measure translates to the Lebesgue measure proper depends on an 

additional condition. This condition is tested by taking subsets A of the 

real numbers using E as an instrument to split A into two partitions: the 

part of A which intersects with E and the remaining part of A which is 

not in E: the set difference of A and E. These partitions of A are subject 

to the outer measure. If for all possible such subsets A of the real 

numbers, the partitions of A cut apart by E have outer measures whose 

sum is the outer measure of A, then the outer Lebesgue measure 

of E gives its Lebesgue measure. Intuitively, this condition means that 

the set E must not have some curious properties which causes a 

discrepancy in the measure of another set when E is used as a "mask" to 

"clip" that set, hinting at the existence of sets for which the Lebesgue 

outer measure does not give the Lebesgue measure. (Such sets are, in 

fact, not Lebesgue-measurable.) 

Examples 

 Any open or closed interval [a, b] of real numbers is Lebesgue-

measurable, and its Lebesgue measure is the length b − a. The open 

interval (a, b) has the same measure, since the difference between the 

two sets consists only of the end points a and b and has measure zero. 

 Any Cartesian product of intervals [a, b] and [c, d] is Lebesgue-

measurable, and its Lebesgue measure is (b − a)(d − c), the area of 

the corresponding rectangle. 

 Moreover, every Borel set is Lebesgue-measurable. However, there 

are Lebesgue-measurable sets which are not Borel sets.  

 Any countable set of real numbers has Lebesgue measure 0. 

 In particular, the Lebesgue measure of the set of rational numbers is 

0, although the set is dense in R. 

 The Cantor set is an example of an uncountable set that has Lebesgue 

measure zero. 

https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Open_interval
https://en.wikipedia.org/wiki/Open_interval
https://en.wikipedia.org/wiki/Set_difference
https://en.wikipedia.org/wiki/Measure_zero
https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Borel_set
https://en.wikipedia.org/wiki/Countable
https://en.wikipedia.org/wiki/Rational_numbers
https://en.wikipedia.org/wiki/Dense_set
https://en.wikipedia.org/wiki/Cantor_set
https://en.wikipedia.org/wiki/Uncountable_set
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 If the axiom of determinacy holds then all sets of reals are Lebesgue-

measurable. Determinacy is however not compatible with the axiom 

of choice. 

 Vitali sets are examples of sets that are not measurable with respect 

to the Lebesgue measure. Their existence relies on  the axiom of 

choice. 

 Osgood curves are simple Plane curves with positive Lebesgue 

measure. The dragon curve is another unusual example. 

 Any line in ℝn
, for n   2, has a zero Lebesgue measure. In general, 

every proper hyperplane has a zero Lebesgue measure in its ambient 

space. 

6.2 LEBESGUE MEASURE PROPERTIES 

 

Translation invariance: The Lebesgue measure of  and  are 

the same. 

The Lebesgue measure on R
n
 has the following properties: 

1. If A is a cartesian product of intervals I1 × I2 × ... × In, 

then A isLebesgue-measurable &   

Here, |I| denotes the length of the interval I. 

2. If A is a disjoint union of countably many disjoint 

Lebesgue-measurable sets, then A is itself Lebesgue-

measurable and λ(A) is equal to the sum (or infinite 

series) of the measures of the involved measurable sets. 

3. If A is Lebesgue-measurable, then so is its complement. 

4. λ(A) ≥ 0 for every Lebesgue-measurable set A. 

https://en.wikipedia.org/wiki/Axiom_of_determinacy
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Vitali_set
https://en.wikipedia.org/wiki/Non-measurable_set
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/Ambient_space
https://en.wikipedia.org/wiki/Ambient_space
https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Disjoint_union
https://en.wikipedia.org/wiki/Countable
https://en.wikipedia.org/wiki/Infinite_series
https://en.wikipedia.org/wiki/Infinite_series
https://en.wikipedia.org/wiki/Complement_(set_theory)
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5. If A and B are Lebesgue-measurable and A is a subset 

of B, then λ(A) ≤ λ(B). (A consequence of 2, 3 and 4.) 

6. Countable unions and intersections of Lebesgue-

measurable sets are Lebesgue-measurable. (Not a 

consequence of 2 and 3, because a family of sets that is 

closed under complements and disjoint countable unions 

need not be closed under countable unions: 

 .) 

7. If A is an open or closed subset of R
n
 (or even Borel set, 

see metric space), then A is Lebesgue-measurable. 

8. If A is a Lebesgue-measurable set, then it is 

"approximately open" and "approximately closed" in the 

sense of Lebesgue measure (see the regularity theorem 

for Lebesgue measure). 

9. A Lebesgue-measurable set can be "squeezed" between a 

containing open set and a contained closed set. This 

property has been used as an alternative definition of 

Lebesgue measurability. More precisely E⊂ℝ,  is 

Lebesgue-measurable if and only if for every 𝜖>0  there 

exist an open set G and a closed set F such that F ⊂ E ⊂ 

G  and  . 

10. A Lebesgue-measurable set can be "squeezed" between a 

containing Gδset and a contained Fσ. I.e, if A is 

Lebesgue-measurable then there exist a Gδset G and 

an Fσ F such that G ⊇ A ⊇ F and λ(G \ A) = λ(A \ F) = 0. 

11. Lebesgue measure is both locally finite and inner regular, 

and so it is a Radon measure. 

12. Lebesgue measure is strictly positive on non-empty open 

sets, and so its support is the whole of R
n
. 

13. If A is a Lebesgue-measurable set with λ(A) = 0 (a null 

set), then every subset of A is also a null set. A fortiori, 

every subset of A is measurable. 

14. If A is Lebesgue-measurable and x is an element of R
n
, 

then the translation of A by x, defined by A + x = 

https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Borel_set
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Regularity_theorem_for_Lebesgue_measure
https://en.wikipedia.org/wiki/Regularity_theorem_for_Lebesgue_measure
https://en.wikipedia.org/wiki/G%CE%B4_set
https://en.wikipedia.org/wiki/F%CF%83_set
https://en.wikipedia.org/wiki/G%CE%B4_set
https://en.wikipedia.org/wiki/F%CF%83_set
https://en.wikipedia.org/wiki/Locally_finite_measure
https://en.wikipedia.org/wiki/Inner_regular_measure
https://en.wikipedia.org/wiki/Radon_measure
https://en.wikipedia.org/wiki/Strictly_positive_measure
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{a + x : a ∈ A}, is also Lebesgue-measurable and has the 

same measure as A. 

15. If A is Lebesgue-measurable     and , then 

the dilation of A by    defined by     {    𝜖 } is also 

Lebesgue-measurable and has measure   

16. More generally, if T is a linear transformation and A is a 

measurable subset of R
n
, then T(A) is also Lebesgue-

measurable and has the measure   

All the above may be succinctly summarized as follows: 

The Lebesgue-measurable sets form a σ-algebra containing all products 

of intervals, and λ is the unique complete translation-

invariant measure on that ζ-algebra 

with   

The Lebesgue measure also has the property of being σ-finite. 

6.3 NULL SETS 

A subset of R
n
 is a null set if, for every ε > 0, it can be covered with 

countably many products of n intervals whose total volume is at most ε. 

All countable sets are null sets. 

If a subset of R
n
 has Hausdorff dimension less than n then it is a null set 

with respect to n-dimensional Lebesgue measure. Here Hausdorff 

dimension is relative to the Euclidean metric on R
n
 (or any 

metric Lipschitz equivalent to it). On the other hand, a set may 

have topological dimension less than n and have positive n-dimensional 

Lebesgue measure. An example of this is the Smith–Volterra–Cantor 

set which has topological dimension 0 yet has positive 1-dimensional 

Lebesgue measure. 

In order to show that a given set A is Lebesgue-measurable, one usually 

tries to find a "nicer" set B which differs from A only by a null set (in the 

sense that the symmetric difference (A − B) ∪ (B − A) is a null set) and 

then show that B can be generated using countable unions and 

intersections from open or closed sets. 

Check your Progress -1  
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Q. 1 What is the defination of Lebesgue measure ? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

 

Q.2 Explain Null sets. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

6.4 CONSTRUCTION OF THE LEBESGUE 

MEASURE 

The modern construction of the Lebesgue measure is an application 

of Carathéodory's extension theorem. It proceeds as follows. 

Fix n ∈ N. A box in R
n
 is a set of the form 

  

where bi ≥ ai, and the product symbol here represents a Cartesian 

product. The volume of this box is defined to be 

  

For any subset A of R
n
, we can define its outer measure λ*(A) by: 

 

We then define the set A to be Lebesgue-measurable if for every 

subset S of R
n
, 

   

These Lebesgue-measurable sets form a σ-algebra, and the Lebesgue 

measure is defined by λ(A) = λ*(A) for any Lebesgue-measurable set A. 
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The existence of sets that are not Lebesgue-measurable is a consequence 

of a certain set-theoretical axiom, the axiom of choice, which is 

independent from many of the conventional systems of axioms for set 

theory. The Vitali theorem, which follows from the axiom, states that 

there exist subsets of R that are not Lebesgue-measurable. Assuming the 

axiom of choice, non-measurable sets with many surprising properties 

have been demonstrated, such as those of the Banach–Tarski paradox. 

In 1970, Robert M. Solovay showed that the existence of sets that are not 

Lebesgue-measurable is not provable within the framework of Zermelo–

Fraenkel set theory in the absence of the axiom of choice.  

6.4.1Relation To Other Measures 

The Borel measure agrees with the Lebesgue measure on those sets for 

which it is defined; however, there are many more Lebesgue-measurable 

sets than there are Borel measurable sets. The Borel measure is 

translation-invariant, but not complete. 

The Haar measure can be defined on any locally compact group and is a 

generalization of the Lebesgue measure (R
n
 with addition is a locally 

compact group). 

The Hausdorff measure is a generalization of the Lebesgue measure that 

is useful for measuring the subsets of R
n
 of lower dimensions than n, 

like submanifolds, for example, surfaces or curves in R
3
 and fractal sets. 

The Hausdorff measure is not to be confused with the notion 

of Hausdorff dimension. 

It can be shown that there is no infinite-dimensional analogue of 

Lebesgue measure. 

6.4.2 Lebesgue's Density Theorem 

Lebesgue's density theorem states that for any Lebesgue measurable 

set , the "density" of A is 0 or 1 at almost every point in . Additionally, 

the "density" of A is 1 at almost every point in A. Intuitively, this means 

that the "edge" of A, the set of points in A whose "neighborhood" is 

partially in A and partially outside of A, is negligible. 

https://en.wikipedia.org/wiki/Borel_measure
https://en.wikipedia.org/wiki/Complete_measure
https://en.wikipedia.org/wiki/Haar_measure
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Let μ be the Lebesgue measure on the Euclidean space R
n
 and A be a 

Lebesgue measurable su bset of R
n
. Define the approximate 

density of A in a ε-neighborhood of a point x in R
n
 as 

 

where Bε denotes the closed ball of radius ε centered at x. 

Lebesgue's density theorem asserts that for almost every 

point x of A the density 

 

exists and is equal to 1. 

In other words, for every measurable set A, the density of A is 0 or 

1 almost everywhere in R
n
.
[1]

 However, it is a curious fact that if μ(A) > 0 

and μ(R
n
 \ A) > 0, then there are always points of R

n
 where the density is 

neither 0 nor 1. 

For example, given a square in the plane, the density at every point 

inside the square is 1, on the edges is 1/2, and at the corners is 1/4. The 

set of points in the plane at which the density is neither 0 nor 1 is non-

empty (the square boundary), but it is negligible. 

The Lebesgue density theorem is a particular case of the Lebesgue 

differentiation theorem. 

Thus, this theorem is also true for every finite Borel measure 

on R
n
 instead of Lebesgue measure, see Discussion. 

6.4.3Liouville Number 

In number theory, a Liouville number is a real number x with the 

property that, for every positive integer n, there exist infinitely many 

pairs of integers (p, q) with q > 1 such that 

  

Liouville numbers are "almost rational", and can thus be approximated 

"quite closely" by sequences of rational numbers. They are precisely 

the transcendental numbers that can be more closely approximated by 

https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Closed_ball
https://en.wikipedia.org/wiki/Almost_everywhere
https://en.wikipedia.org/wiki/Lebesgue%27s_density_theorem#cite_note-1
https://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem
https://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem
https://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem#Discussion
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Transcendental_number
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rational numbers than any algebraic irrational number. In 1844, Joseph 

Liouville showed that all Liouville numbers are transcendental, thus 

establishing the existence of transcendental numbers for the first time. 

6.4.4 The existence of Liouville numbers 

(Liouville's constant) 

Here we show that Liouville numbers exist by exhibiting a construction 

that produces such numbers. 

For any integer b ≥ 2, and any sequence of integers (a1, a2, …, ), such 

that ak ∈ {0, 1, 2, …, b − 1} for all k ∈ {1, 2, 3, …} and there are 

infinitely many k with ak ≠ 0, define the number 

!
1

k

k
k

a
x

b





  

 

In the special case when b = 10, and ak = 1, for all k, the resulting 

number x is called Liouville's constant: 

L = 

0.110001000000000000000001000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000

0001... 

It follows from the definition of x that its base-b representation is 

 

where the nth term is separated from the next term by (nn! − 1) zeros. 

Since this base-b representation is non-repeating it follows that x cannot 

be rational. Therefore, for any rational number p/q, we have 

|x − p/q | > 0. 

Now, for any integer n ≥ 1, define qn and pn as follows: 

 

Then 

https://en.wikipedia.org/wiki/Joseph_Liouville
https://en.wikipedia.org/wiki/Joseph_Liouville
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Therefore, we conclude that any such x is a Liouville number. 

Notes on the proof 

1. The inequality  follows from the fact that "il 

existe" k, ak ∈ {0, 1, 2, …, b−1}. Therefore, at most, ak = b-1. The 

largest possible sum would occur if the sequence of integers, 

(a1, a2, …), were (b-1, b-1, ...) where ak = b-1, for all k.  will 

thus be less than, or equal to, this largest possible sum. 

2. The strong inequality   follows from our 

motivation to eliminate the series by way of reducing it to a series 

for which we know a formula. In the proof so far, the purpose for 

introducing the inequality in 1. comes from intuition that 

 (the geometric series formula); therefore, if we can find 

an inequality from   that introduces a series with (b-1) in the 

numerator, and if we can work to further reduce the denominator 

term    as well as shifting the series indices from 0 to ∞, then 

we will be able to eliminate both series and (b-1) terms, getting us 

closer to a fraction of the form  , which is the end-goal of 

the proof. We further this motivation here by selecting now from the 

sum   a partial sum. Observe that, for any term in , 

since b ≥ 2, then  , for all k (except for when n=1). 

Therefore,  (since, even if n=1, all subsequent 

https://en.wikipedia.org/wiki/Geometric_series
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terms are smaller). In order to manipulate the indices so that k starts 

at 0, we select a partial sum from within  (also less than 

the total value since it's a partial sum from a series whose terms are 

all positive). We will choose the partial sum formed by starting at k 

= (n+1)! which follows from our motivation to write a new series 

with k=0, namely by noticing that  

3. For the final inequality , we have chosen this 

particular inequality (true because b ≥ 2, where equality follows if 

and only if n=1) because we wish to manipulate  into 

something of the form  . This particular inequality 

allows us to eliminate (n+1)! and the numerator, using the property 

that (n+1)! - n! = (n!)n, thus putting the denominator in ideal form 

for the substitution . 

6.4.5 IRRATIONALITY 

Here we will show that the number x = c/d, where c and d are integers 

and d > 0, cannot satisfy the inequalities that define a Liouville number. 

Since every rational number can be represented as such c/d, we will have 

proven that no Liouville number can be rational. 

More specifically, we show that for any positive integer n large enough 

that 2
n − 1

 > d > 0 (that is, for any integer n > 1 + log2(d ) ) no pair of 

integers (p, q ) exists that simultaneously satisfies the two inequalities 

 

From this the claimed conclusion follows. 

Let p and q be any integers with q > 1. Then we have, 

 

If |cq − dp | = 0, we would have 

 

https://en.wikipedia.org/wiki/Rational_number
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meaning that such pair of integers (p, q ) would violate 

the first inequality in the definition of a Liouville number, irrespective of 

any choice of n. 

If, on the other hand, |cq − dp | > 0, then, since cq − dp is an integer, we 

can assert the sharper inequality |cq − dp | ≥ 1. From this it follows that 

 

Now for any integer n > 1 + log2(d ), the last inequality above implies 

 

Therefore, in the case |cq − dp | > 0 such pair of integers (p, q ) would 

violate the second inequality in the definition of a Liouville number, for 

some positive integer n. 

We conclude that there is no pair of integers (p, q ), with q >1, that 

would qualify such an x = c/d as a Liouville number. 

Hence a Liouville number, if it exists, cannot be rational. 

6.4.6 UNCOUNTABILITY 

Consider, for example, the number 

3.1400010000000000000000050000.... 

3.14(3 zeros)1(17 zeros)5(95 zeros)9(599 zeros)2(4319 zeros)6... 

where the digits are zero except in positions n! where the digit equals 

the nth digit following the decimal point in the decimal expansion of π. 

As shown in the section on the existence of Liouville numbers, this 

number, as well as any other non-terminating decimal with its non-zero 

digits similarly situated, satisfies the definition of a Liouville number. 

Since the set of all sequences of non-null digits has the cardinality of the 

continuum, the same thing occurs with the set of all Liouville numbers. 

Moreover, the Liouville numbers form a dense subset of the set of real 

numbers. 

https://en.wikipedia.org/wiki/Liouville_number#The_existence_of_Liouville_numbers_(Liouville's_constant)
https://en.wikipedia.org/wiki/Cardinality_of_the_continuum
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https://en.wikipedia.org/wiki/Dense_set
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6.4.7 Liouville Numbers And Measure 

From the point of view of measure theory, the set of all Liouville 

numbers L is small. More precisely, its Lebesgue measure is zero. The 

proof given follows some ideas by John C. Oxtoby. 

For positive integers n > 2 and q ≥ 2 set: 

 

we have 

 

Observe that for each positive integer n ≥ 2 and m ≥ 1, we also have 

 

Since 

 

and n > 2 we have 

 

Now 

 

and it follows that for each positive integer m, L ∩ (−m, m) has Lebesgue 

measure zero. Consequently, so has L. 

In contrast, the Lebesgue measure of the set T of all real transcendental 

numbers is infinite (since T is the complement of a null set). 

In fact, the Hausdorff dimension of L is zero, which implies that 

the Hausdorff measure of L is zero for all dimension d > 0. Hausdorff 

dimension of L under other dimension functions has also been 

investigated.  

https://en.wikipedia.org/wiki/Lebesgue_measure
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STRUCTURE OF THE SET OF LIOUVILLE NUMBERS 

For each positive integer n, set 

 

The set of all Liouville numbers can thus be written as 

 

Each Un is an open set; as its closure contains all rationals (the p/q  from 

each punctured interval), it is also a dense subset of real line. Since it is 

the intersection of countably many such open dense sets, L is comeagre, 

that is to say, it is a dense Gδ set. 

Irrationality Measure 

The Liouville-Roth irrationality measure (irrationality 

exponent, approximation exponent, or Liouville–Roth constant) of a real 

number x is a measure of how "closely" it can be approximated by 

rationals. Generalizing the definition of Liouville numbers, instead of 

allowing any n in the power of q, we find the largest possible value 

for μ such that  is satisfied by an infinite number of integer 

pairs (p, q) with q > 0. This maximum value of μ is defined to be the 

irrationality measure of x. For any value μ less than this upper bound, the 

infinite set of all rationals p/q satisfying the above inequality yield an 

approximation of x. Conversely, if μ is greater than the upper bound, then 

there are at most finitely many (p, q) with q > 0 that satisfy the 

inequality; thus, the opposite inequality holds for all larger values of q. In 

other words, given the irrationality measure μ of a real number x, 

whenever a rational approximation x ≅ p/q, p,q ∈ N yields n + 1 exact 

decimal digits, we have  

for any ε>0, except for at most a finite number of "lucky" pairs (p, q). 

For a rational number α the irrationality measure is μ(α) = 1. The Thue–

Siegel–Roth theorem states that if α is an algebraic number, real but not 

rational, then μ(α) = 2. Almost allnumbers have an irrationality measure 

equal to 2. Transcendental numbers have irrationality measure 2 or 

https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Dense_set
https://en.wikipedia.org/wiki/Meagre_set
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greater. For example, the transcendental number e has μ(e) = 2. The 

irrationality measures of π, log 2, and log 3 are at most 7.60630853, 

3.57455391, and 5.125, respectively.  

It has been proven that if the series  (where n is in radians) 

converges, then  's irrationality measure is most 2.5. The Liouville 

numbers are precisely those numbers having infinite irrationality 

measure.
 

Irrationality base 

The irrationality base is a weaker measure  rationality introduced by 

J.Sondow and is regarded as an irrationality measure for Liouville 

numbers. It is defined as follows: 

Let   be an irrational number. If there exists a real number     with 

the property that for any 𝜖 > 0 , there is a positive integer q(𝜖) such that 

 

then   is called the irrationality base of  and is represented as      

If no such   exists, then   is called a super Liouville number. 

Example: The series  is 

a super Liouville number, while the 

series  is a Liouville 

number with irrationality base 2. (
b
a represents tetration.) 

Liouville Numbers and Transcendence 

Establishing that a given number is a Liouville number provides a useful 

tool for proving a given number is transcendental. However, not every 

transcendental number is a Liouvlle number. The terms in the continued 

fraction expansion of every Liouville number are unbounded; using a 

counting argument, one can then show that there 

mustbeuncountablymany transcendental numbers which are not 

Liouville. Using the explicit continued fraction expansion of e, one can 

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Tetration
https://en.wikipedia.org/wiki/Continued_fraction
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show that e is an example of a transcendental number that is not 

Liouville. Mahler proved in 1953 that π is another such example.  

The proof proceeds by first establishing a property of irrational algebraic 

numbers. This property essentially says that irrational algebraic numbers 

cannot be well approximated by rational numbers, where the condition 

for "well approximated" becomes more stringent for larger denominators. 

A Liouville number is irrational but does not have this property, so it 

can't be algebraic and must be transcendental. The following lemma is 

usually known as Liouville's theorem (on diophantine 

approximation), there being several results known as Liouville's 

theorem.Below, we will show that no Liouville number can 

bealgebraic. 

Lemma: If α isanirrational number which is the root of a polynomial f of 

degree n > 0 with integer coefficients, then there exists a real number A > 

0 such that, for all integers p, q, with q > 0, 

 

Proof of Lemma: Let M be the maximum value of |f ′(x)| (the absolute 

value of the derivative of f) over the interval [α − 1, α + 1]. Let α1, α2, 

..., αm be the distinct roots of f which differ from α. Select some 

value A > 0 satisfying 

 

Now assume that there exist some integers p, q contradicting the lemma. 

Then 

 

Then p/q is in the interval [α − 1, α + 1]; and p/q is not in {α1, α2, 

..., αm}, so p/q is not a root of f; and there is no root 

of f between α and p/q.By the mean value theorem, there exists 

an x0 between p/q and α such that 
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https://en.wikipedia.org/wiki/Polynomial
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Since α is a root of f but p/q is not, we see that |f ′(x0)| > 0 and we can 

rearrange:  

 

Now, f is of the form   where each ci is an integer; so we can 

express |f(p/q)| as 

  

the last inequality holding because p/q is not a root of f and the ci are 

integers.Thus we have that |f(p/q)| ≥ 1/q
n
. Since |f ′(x0)| ≤ M by the 

definition of M, and 1/M > A by the definition of A, we have that 

 

which is a contradiction; therefore, no such p, q exist; proving the 

lemma. 

Proof of assertion: As a consequence of this lemma, let x be a 

Liouville number; as noted in the article text, x is then irrational. If x is 

algebraic, then by the lemma, there exists some integer n and some 

positive real Asuch that for all p, q 

 

Let r be a positive integer such that 1/(2
r
) ≤ A. If we let m = r + n, and 

since x is a Liouville number, then there exist integers a, b where b > 1 

such that 

 

which contradicts the lemma. Hence, if a Liouville number exists, it 

cannot be algebraic, and therefore must be transcendental. 

The idea of the Lebesgue integral is to first define a measure on subsets 

of ℝ. That is, we wish to assign a number m(S) to each subset S of ℝ, 

representing the total length that S takes up on the real number line. For 

example, the measure m(I) of any interval I ⊆ ℝ should be equal to its 

length ℓ(I).           
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Measure should also be additive, meaning that the measure of a disjoint 

union of two sets is the sum of the measures of the sets:  

 

Indeed, if we want m to be compatible with taking limits, it should be 

countably additive, meaning that 

 

 for any sequence {Sn} of pairwise disjoint subsets of ℝ.  

             Of course, the measure m(ℝ) of the entire real line should be 

infinite, as should the measure of any open or closed ray. Thus the 

measure should be a function 

 

where P(ℝ) is the power set of ℝ.  

Question: Measuring Subsets of ℝ  

Does there exist a function m: P(ℝ) → [0,∞] having the following 

properties?  

1. m(I) = ℓ(I) for every interval I ⊆ ℝ.  

2. For every sequence S1, S2, . . . of pairwise disjoint subsets of ℝ,  

  

Surprisingly, the answer to this question is no, although it will be a 

while before we prove this. But it turns out that it is impossible to 

define a function m: P(ℝ) → [0,∞] satisfying both of the conditions 

above.  

The reason is that there exist certain subsets of ℝ that really cannot be 

assigned a measure. In fact, there is a rigorous sense in which most 
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subsets of ℝ cannot be assigned a measure. Interestingly, actual 

examples of this phenomenon are difficult to construct, with all such 

constructions requiring the axiom of choice. As a result, such poorly 

behaved sets are quite rare in practice, and it is possible to define a 

measure that works well for almost any set that one is likely to 

encounter.  

Thus our plan is to restrict ourselves to a certain collection M of 

subsets of ℝ, which we will refer to as the Lebesgue measurable sets. 

We will then define a function m: M → [0,∞] called the Lebesgue 

measure, which has all of the desired properties, and can be used to 

define the Lebesgue integral. The following theorem summarizes what 

we are planning to prove.  

6.5 MAIN THEOREM EXISTENCE OF 

LEBESGUE MEASURE  

There exists a collection M of subsets of ℝ (the measurable sets) and a 

function m: M → [0,∞] satisfying the following conditions: 

1. Every interval I ⊆ ℝ is measurable, with m(I) = ℓ(I).  

2. If E ⊆ R is a measurable set, then the complement E
c
 = ℝ − E is also 

measurable.  

3. For each sequence {En} of measurable sets in ℝ, the union   n∈ℕ En 

is also measurable. Moreover, if the sets {En} are pairwise disjoint,  

then  

6.5.1Lebesgue Outer Measure  

We begin by defining the Lebesgue outer measure, which assigns to 

each subset S of ℝ an ―outer measure‖ m  (S). Thus m  will be a 

function m  : P(ℝ) → [0,∞]  

where P (ℝ) denotes the power set of ℝ.  
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Of course, m  will not be countably additive. Instead, it will have the 

weaker property of countable subadditivity, meaning that  

  

for any sequence {Sn} of subsets of ℝ. The outer measure m  should be 

thought of as our first draft of Lebesgue measure. Indeed, once we 

determine which subsets of R are measurable, we will simply restrict 

m  to the collection M of measurable sets to obtain the Lebesgue 

measure m. Thus, even though m  is not countably additive in general, 

it will turn out be countably additive on the collection of measurable 

sets. For the following definition, we say that a collection C of subsets 

of ℝ covers a set S ⊆ ℝ if S ⊆ S  C.  

Definition: Lebesgue Outer Measure  

If S ⊆ ℝ, the (Lebesgue) outer measure of S is defined by  

 

It should make intuitive geometric sense that m  (J) = ℓ(J) for any 

interval J, though we will put off the proof of this for a little while. The 

difficult part is to show that if we cover an interval J with open 

intervals, then the sum of the lengths of the open intervals is greater 

than or equal to the length of J.  

Note that m  (S) may be infinite if ∑I∈C ℓ(I) is infinite for every 

collection C of open intervals that covers S. For example, it is not hard 

to see that m  (ℝ) must be infinite.  

Proposition 1 Properties of m    

Lebesgue outer measure m  has the following properties: 

 1. m  (∅) = 0.  

2. If S ⊆ T ⊆ ℝ, then m  (S) ≤ m  (T).  

3. If {Sn} is a sequence of subsets of ℝ, then  



Notes 

176 

 

PROOF Statement (1) is obvious from the definition. For (2), let S ⊆ T 

⊆ ℝ, and let C be any collection of open intervals that covers T. Then C 

also covers S, so  

 

This holds for every cover C of T by open intervals, and therefore m  

(S) ≤ m  (T). 

 For (3), let {Sn} be a sequence of subsets of ℝ, and let S =  n∈N Sn. If 

m  (Sn) is infinite for some n, then by statement (2) it follows that m  

(S) = ∞, and we are done. Suppose then that m  (Sn) < ∞ for all n. For 

each n, let Cn be a cover of Sn by open intervals so that 

 

Then C =  n∈N Cn is a cover of S by open intervals, so  

  

Since 𝜖 was arbitrary, statement (3) follows.  

Lebesgue Measure 

 We are now ready to define the measurable subsets of R. There are 

many possible equivalent definitions of measurable sets, and the 

following definition is known as Carétheodory‘s criterion. It is not very 

intuitive, and we shall see equivalent definitions of measurability later on 

that make much more sense. The advantage of Carétheodory‘s criterion 

is that it is relatively easy to use from a theoretical perspective, and also 

it can be generalized to many other settings.  

Definition: Lebesgue Measure A subset E of ℝ is said to be (Lebesgue) 

measurable if 

m  (T ∩ E) + m  (T ∩ E
c 
) = m  (T). 
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for every subset T of ℝ. In this case, the outer measure m  (E) of E is 

called the (Lebesgue) measure of E, and is denoted m(E). The arbitrary 

subset T of ℝ that appears in the criterion is known as a test set. Note 

that 

m  (T ∩ E) + m  (T ∩ E
c
 ) ≥ m  (T) 

automatically since m  is subadditive 

. Thus a set E is Lebesgue measurable if and only if 

m  (T ∩ E) + m  (T ∩ E
c
 ) ≤ m  (T) 

 for every test set T. Note also that Carétheodory‘s criterion is symmetric 

between E and E
c
 . Thus a set E is measurable if and only if its 

complement E
c
 is measurable.  

Proposition 2 Union of Two Measurable Sets  

If E and F are measurable subsets of ℝ, then E ∪ F is also measurable.  

PROOF : 

Let T ⊆ ℝ be a test set. Since E is measurable, we know that  

m  (T) = m  (T ∩ E) + m  (T ∩ E
c
 ).                       (1) 

Also, if we use T ∩ (E ∪ F) as a test set, we find tha 

t m  T ∩ (E ∪ F)  = m  (T ∩ E) + m  T ∩ E
c
 ∩ F                           . (2) 

Finally, since F is measurable, we know that  

m  (T ∩ E
c
 ) = m  (T ∩ E

c
 ∩ F) + m  (T ∩ E

c 
∩ F

c
 ).                    (3) 

Combining equations (1), (2), and (3) together yields  

m  (T) = m  T ∩ (E ∪ F)  + m  (T ∩ E
c
 ∩ F

c
 ). 

 Since E
c
 ∩ F

c
 = (E ∪ F)

c
 , this proves that E ∪ F is measurable.  
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Corollary 3 Intersection of Two Measurable Sets  

If E and F are measurable subsets of R, then E ∩ F is also measurable.  

PROOF Since E and F are measurable, their complements E
c
 and F

c
 is 

also measurable. It follows that the union E
c
 ∪ F

c
 is measurable, and the 

complement of this is E ∩ F  

Proposition 4 Countable Additivity Let {Ek} be a sequence of pairwise 

disjoint measurable subsets of R. Then the union k∈N Ek is 

measurable, and  

 

PROOF Let T ⊆ ℝ be a test set, and let U = k∈N Ek. We wish to show 

that m  (T) ≥ m  (T ∩ U) + m  (T ∩ U
c
 ).  

For each n ∈ N, let Un = Ek. By the Proposition 2, each Un is 

measurable, so m  (T) = m  (T ∩ Un) + m  (T ∩   
 ). 

But each Un ⊆ U, so T ∩   
  ⊇ T ∩ U c ,and hence 

m  (T) ≥ m  (T ∩ Un) + m  (T ∩ U
c
 ). 

Thus it suffices to show that m  (T ∩ Un) → m  (T ∩ U) as n → ∞. 

To prove this claim, observe first that  

m  (T ∩ Uk) = m  (T ∩ Uk ∩ Ek) + m  (T ∩ Uk ∩ E c k ) = m  (T ∩ 

Ek) + m  (T ∩ Uk−1). 

 for each k. By induction, it follows that  

  

for each n. Then  

 

where the last inequality follows from the countable subadditivity of m  .  

By the squeeze theorem, we conclude that  
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which proves that U is measurable. Moreover, in the case where T = ℝ, 

the last equation gives  

  

Corollary 5 Countable Union of Measurable Sets If {Ek} is any 

sequence of measurable subsets of R, then the union  k∈N Ek is 

measurable. 

PROOF Let Un =  Ek for each k, and let Fn = Un − Un−1, with F1 

= U1.  

By Proposition 2, we know that each Un is measurable, and thus 

 is measurable by Corollary 3. But the sets {Fn} are 

disjoint, and  

  

so  is measurable. 

6.5.2The Geometry Of Intervals  

All that remains in proving the desired properties of Lebesgue measure is 

to show that intervals in ℝ are measurable, with m(I) = ℓ(I) for any 

interval I. Unlike all of the work so far, proving this requires exploiting 

the geometry of intervals in a significant way. We begin with the 

following proposition.  

Proposition 6 Intervals are Measurable  

Every interval J in ℝ is Lebesgue measurable.  

PROOF Since each interval in ℝ is the intersection of two rays, it 

suffices to prove that each ray in ℝ is measurable. 
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            Let ℝ be a ray in ℝ, and let T ⊆ ℝ be a test set. We wish to prove 

that 

m  (T) ≥ m  (T ∩R) + m  (T ∩ R
c
 ) 

 If m  (T) = ∞ then we are done, so suppose that m  (T) < ∞. Let  > 0, 

and let C be a cover of T by open intervals so that  

  

Since the sum ∑I∈C ℓ(I) is finite, C must be countable (see the appendix 

on sums).  

Let {I1, I2, . . .} be an enumeration of the elements of C, where we set In 

= ∅ for n > |C| if C is finite. Then each of the intersections In ∩ R and In 

∩ R
c
 is an interval, with ℓ(In ∩ R) + ℓ(In ∩ R

c
 ) = ℓ(In). For each n, let Jn 

and Kn be open intervals containing In ∩ R and In ∩ R
c
 , respectively, 

such that  

ℓ(Jn) ≤ ℓ(In ∩ R) + 2 n+2 and ℓ(Kn) ≤ ℓ(In ∩ R
c
 ) +  2 n+2 .  

Then {Jn}n∈N is a cover of T ∩ R by open intervals, and {Kn}n∈N is a 

cover of T ∩ R
c
 by open intervals,  

so  

 

 Since 𝜖 was arbitrary, this proves the desired inequality. All that remains 

is to prove that the measure of any interval is equal to its length. For this 

we need the famous Heine-Borel theorem, which we will state and prove 

next. Those familiar with point-set topology should recognize this 

theorem as a special case of the statement that closed intervals in ℝ are 

compact. In fact, the notion of compactness in point-set topology arose 

as a generalization of this theorem.  
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6.5.3Heine-Borel Theorem  

Let [a, b] be a closed interval in R, and let C be a family of open intervals 

that covers [a, b]. Then there exists a finite subcollection of C that covers 

[a, b].  

Proof: 

 Let S be the set of all points s ∈ [a, b] for which the interval [a, s] can be 

covered by some finite subcollection of C. Note that a ∈ S, since the 

interval [a, a] is just a single point. Our goal is to prove that b ∈ S. Let x 

= sup(S). Since S ⊆ [a, b], we know that x ∈ [a, b]. Therefore, there 

exists an interval (c, d) ∈ C that contains x. Since c < x, there is some 

point s ∈ S that lies between c and x. Let {(c1, d1), . . . ,(cn, dn)} be a 

finite subcollection of C that covers [a, x]. Then the collection {(c1, d1), . . 

. ,(cn, dn),(c, d)} covers [a, x], which proves that x ∈ S.  

Moreover, if x < b, then there exists an  > 0 such that  

x +  ∈ [a, b] and x +  ∈ (c, d). 

Then the collection {(c1, d1), . . . ,(cn, dn),(c, d)} covers [a, x + ], which 

proves that x +  ∈ S, a contradiction since x is the supremum of S. We 

conclude that x = b, and therefore b ∈ S. In addition to the Heine-Borel 

theorem, the following proof will use the Riemann integral and 

characteristic functions. If S is any subset of ℝ, the characteristic 

function (or indicator function) for S is the function χS : ℝ → ℝ defined 

by  

 

Note that if I is an interval then 

Proposition 8 Measure of an Interval  

If J is any interval in ℝ, then m(J) = ℓ(J).  
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PROOF Note first that, for every 𝜖 > 0, there exists an open interval J´ 

containing J so that ℓ(J´) ≤ ℓ(J) + . ℓ(J´) ≤ ℓ(J) + . Since 𝜖 was arbitrary, it 

follows that m(J) ≤ ℓ(J). Now let C be any collection of open intervals 

that covers J. Let  > 0, and let K be a closed subinterval of J such that 

ℓ(K) ≥ ℓ(J) − 𝜖. By the Heine-Borel theorem, there exists a finite 

subcollection {I1, . . . , In} of C that covers K. Then  

χI1 + · · · + χIn ≥ χK  

so  

 

Since 𝜖 was arbitrary, it follows that  

  

which proves that m(J) ≥ ℓ(J).  

6.6 LETS SUM UP 

In this unit, we have covered the following points. 

1. We have defined a-algebra of subsets of a set X. 

2. We have defined out measure and discussed how to compute the outer 

measure of set. 

3. We have discussed how to check whether a set is measurable or not. 

4. We have given an example of a set which is not measurable. 

5. We have defined measurable functions. 
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6.7 KEYWORD 

HEINE-BORAL THEOREM 

LEBESQUE 

SUBCOLLECTION 

ENUMARATION 

SUBCOVER 

COUNTABLE 

6.8 QUESTION FOR REVIEW 

1. If {En} is a sequence of measurable sets, prove that the intersection T 

n∈ℕ En is measurable. 

 2. Prove that if S ⊆ R and m  (S) = 0, then S is measurable.  

3. a) If E ⊆ F are measurable sets, prove that F − E is measurable. b) 

Prove that if m(E) < ∞ then m(F − E) = m(F) − m(E).  

4. If E and F are measurable sets with finite measure, prove that m(E ∪ 

F) = m(E) + m(F) − m(E ∩ F).  

5. Suppose that E ⊆ S ⊆ F, where E and F are measurable. Prove that if 

m(E) = m(F) and this measure is finite, then S is measurable as well. 

 6. Prove that every countable subset of ℝ is measurable and has 

measure zero. 

 7. Given a nested sequence E1 ⊆ E2 ⊆ · · · of measurable sets, prove 

that  
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1. Check Section 6.1 
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UNIT -7: LEBESGUE OUTER        

MEASURE     

STRUCTURE 

7.1 Introduction 

     7.1.1 Lebesgue Outer Measure Theorem 

     7.1.2 Monotonically Lebesgue Outer Measure 

     7.1.3 Some Example On Lebesgue Outer Measure 

7.2 Lebesgue Measurebility 

7.3 Let sum up 

7.4 Keyword 

7.5 Questions For Review 

7.6 Suggestion Reading & Reference 

7.7 Answers To Check Your Progress  

7.1 INTRODUCTION  

We are now ready to define the Lebesgue outer measure set function. 

This is a set function defined for all subsets of ℝ. 

The Lebesgue outer measure (or outer measure) of a set A ⊆ Ris given 

by , where the infimum is taken over all the 

possible countable collection of open intervals In such that  

 

Definition: The Lebesgue Outer Measure Function is the function 

by 

 

The Lebesgue Outer Measure of the Set E is m (E). 

In other words, if E⊆P(ℝ) then m (E) is defined by taking all open-

interval covers of E, summing the lengths of all of the open intervals in 

those covers, and then taking the infimum of these values. 
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Sometimes for brevity we simply say "outer measure" to refer to the 

Lebesgue outer measure of a set. 

We now describe some important properties of the Lebesgue outer 

measure function. 

 Measurement has been a special interest for mathematicians and 

scientists since the early days of civilization.  

 Two thousand years ago, the classical geometers of Greece made 

profound contributions to the study of measurement.  

 To determine the area of a circle, the Greeks constructed 

sequences of inscribed and circumscribed regular polygons, with 

the number of sides tending to infinity.  

 This gives a sequence of lower and upper estimates of the area of 

the circle, and the area of the circle is defined to be the common 

limit as the number of sides tends to infinity.  

 This procedure, known as the Method of Exhaustion, was 

formulated by Euxodus of Cnidos (408-355 B.C.E.)., and was 

developed systematically by Archimedes (287-212 B.C.E.). 

Outline Introduction Objective Lebesgue Outer Measure 

Fundamental Property References  

 Although the Riemann integral suffices in most daily situations, it 

fails to meet our needs in several important ways. First, the class 

of Riemann integrable functions is relatively small. Second and 

related to the first, the Riemann integral does not have 

satisfactory limit properties. Third, all Lp spaces except L∞ fails 

to complete under Riemann integration.  

 Later we will see how can we overcome these limitation using 

more abstract spaces.  

 The purpose of this and subsequent lessons is to provide a 

concise introduction to Measure theory, in the context of abstract 

measure spaces. 

7.1.1 LEBESGUE OUTER MEASURE 

THEOREM  

Theorem 1: Let E∈P(R) be a finite set. Then m (E)=0. 
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Proof: Let E={x1,x2,...,xn}. Then for every ϵ>0 and for 

all k∈{1,2,...,n} we have that xk  So: 

 

Furthermore, the length corresponding to the open interval cover of E for 

each given ϵ is given by: 

 

So for all ϵ>0 we have that 

 

Since n is fixed, the inequality above implies that m (E)=0. ■ 

7.1.2 Theorem 2 (Monotonicity Of The Lebesgue 

Outer Measure) 

Let A,B∈P(ℝ). If A⊆B then m (A)≤m (B). 

Proof: Let A,B∈P(ℝ) be such that A⊆B. 

 

 

Example Let A be any countable set. Therefore, it can be expreseed as  

 

 Then,  
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Example : Suppose, A is countable. But, then it can be written as a 

sequence  

 

And in that case, m  (A) = 0. A contradiction to the given fact that m   

(A)   0. Hence A should be uncountable. 

Note. We now introduce a type of measure with an eye towards 

the requirement that m(I) =ℓ(I) for intervals (at least, for open 

intervals).  

Definition. Let A⊂ℝ and let {In} represent a countable 

collection of bounded open intervals such that A ⊂  In. The 

outer measure of A is 

 

where the infimum is taken over all such open interval 

coverings of A. 

Note.  Since m
*
(A) is defined as an infimum, then m

*
(A) is 

defined for every A 𝜖 P (ℝ). m
*
(∅) = 0 and if A is finite in 

cardinality then m
*
(A) = 0.  Also, if  A ⊂ B then m

*
(A) 

  m
*
(B) (i.e., m

*
 satisfies monotonicity).   

7.1.3 SOME EXAMPLE ON LEBESGUE OUTER 

MEASURE 

So far we have shown the following properties regarding the Lebesgue 

outer measure: 

1. For any finite or countably infinite subset E of R: 

m (E)=0 

m  has the monotonicity property. If A⊆B then: 
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m(A)≤m(B) 

If I is any interval then: 

m (I)=l(I) 

 m  is translation invariant. For any subset E of R and for 

any a∈R we have that: 

m (E+a)=m (E) 

m  is countably subadditive. For any sequence  of subsets 

of ℝ we have that: 

 

We now look at some example problems involving the Lebesgue outer 

measure. 

Example 1 

Prove that [0,1] is an uncountable subset of ℝ. 

If [0,1] were countable then m ([0,1])=0. But [0,1] is an interval and 

so m ([0,1])=l([0,1])=1. Therefore [0,1] must be an uncountable subset 

of ℝ. 

Example 2 

Let I be the set of all irrational numbers contained in the 

interval [0,1]. Prove that m (I)=1. 

The set of all rational numbers contained in [0,1] is a countable set and 

so by countable subadditivity we have that: 

1=m ([0,1])= m (I∪([0,1]∖I))≤ m (I)+m([0,1]∖I)= m (I) 

But since I⊆[0,1] we have the monotonicity of the Lebesgue outer 

measure that: 

m (I)≤ m ([0,1])=1 

Therefore we conclude that m (I)=1. 

Example 3 
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Let A,B⊆ℝ. Prove that if m (A)=0 then m (A∪B)= m (B). 

Since B⊆A∪B we have by the monotonicity property of the Lebesgue 

outer measure that: 

m (B)≤ m (A∪B) 

Furthermore by the countable subadditivity of the Lebesgue outer 

measure we have that: 

m (A∪B)≤ m (A)+ m (B)=0+ m (B)= m (B) 

Therefore we conclude that m (A∪B)= m (B). 

Definition: For any open interval I = (a, b), define λ(I) = b − a.  

Recall. A set of real numbers G is open if and only if it is a 

countable disjoint union of open intervals:  

 

where each Ik is an open interval. 

Definition: For the above open set of real numbers 

 define  

 

If one of the Ik is unbounded, define λ(G) = ∞ and if G = ∅ 

define λ(G) = 0.  

Definition: Let E be a bounded closed set with a = glb(E) and b 

= lub(E) (that is, [a, b] is the smallest closed interval containing 

E). Define  

λ(E) = b − a − λ((a, b) \ E). 

Notice: If E is closed, then (a, b) \ E = (a, b) ∩ E
c
 is open. Also, 

we get by rearranging: 

λ(E) + λ((a, b) \ E) = b − a. 

Note: We have λ defined on any open set or any closed and 
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bounded set. We now use λ defined on the open sets to define 

outer measure, identical to Royden and Fitzpatrick‘s approach. 

Definition: Let E be an arbitrary subset of ℝ.  

Let λ  (E) = inf{λ(g) | E ⊂ G, G is open}.  

Then λ  (E) is called the Lebesgue outer measure of E. 

Note. By definition, for open G, λ  (G) = λ(G).  

Theorem:  For every E ⊂ R, there exists a Gδ set G such that E 

⊂ G and λ  (E) = λ  (G). G is called a measurable cover for E. 

Proof: This is a result in Royden and Fitzpatrick (Theorem 

2.11(ii)). 

Note. Since for open G (with the notation from above), 

 we immediately have  

 

This is the same as Royden and Fitzpatrick‘s definition of outer 

measure µ . As previously mentioned, we show in Real 

Analysis 1 that λ  = µ  is (1) translation invariant, (2) 

monotone, (3) the outer measure of an interval is its length, and 

(4) countably subadditive. 9 

Note: It would seem that λ  should do for a measure. However, 

λ  is not countably additive. In fact, there are disjoint sets E1 

and E2 such that  

λ(E1 ∪ E2) = λ  (E1) + λ  (E2) 

 does not hold. Specific examples of such sets are seen with the 

construction of a nonmeasurable set (climaxing in the 

―offensive‖ Banach-Tarski Paradox).  
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Definition: Let E be an arbitrary subset of R. Let 

 λ (E) = sup{λ(F) | F ⊂ E, F is compact}.  

Then λ (E) is called the Lebesgue inner measure of E.  

Note: By definition, for compact F, λ (F) = λ(F).  

Note: Similar to the proofs for µ , we can show that λ  is:  

(1) translation invariant (λ (E + x) = λ (E) for all x ∈ R),  

(2) monotone (A ⊂ B implies λ (A) ≤ λ (B)),  

(3) the inner measure of an interval is its length: λ (I) = ℓ(I) for 

all intervals I ⊂ ℝ, and 

(4) countably superadditive  

 

Theorem: For every E ⊂ R, there exists an Fζ set F such that F 

⊂ E and λ (F) = λ (E). F is called a measurable kernal of g. 

 Proof: First, suppose λ (E) = m < ∞. Since 

 λ (E) = sup{λ(F) | F ⊂ E, F is compact},  

then by definition of supremum, for all εk = 1/k, k ∈ N, there is 

a compact set Fk such that m ≥ λ(Fk) > m − 1/k. Consider the 

set F = ∪ ∞ k=1Fk. Since each Fk is compact (and therefore 

closed), then F is a countable union of closed sets—i.e., F is an 

Fζ set. Also, Fk ⊂ F ⊂ E for all k ∈ N. Therefore, by 

monotonicity of λ  
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 for all k ∈ N, and hence λ (F) = λ (E). 

Second, suppose λ (E) = ∞. Then for all k ∈ N there is a 

compact set Fk such that λ (Fk) > k from the supremum 

definition of λ (E). Again, take F = ∪Fk and F is an Fζ set with 

λ (F) = λ (∪Fk) ≥ ∑λ (Fk) = ∞ = λ (E)  

where the inequality part follows from the countable super 

additivity of λ  

Theorem: If F is a compact set, then λ  (F) = λ (F). In the next 

section, we will see that this is the definition of measurable. So 

every compact set F is measurable.  

Proof: Let [a, b] be the smallest interval containing F. We 

know that (a, b) = ((a, b) \ F) ∪ F and since λ  is countably 

additive,  

λ  ((a, b)) = λ  (((a, b) \ F) ∪ F) = λ  ((a, b) \ F) + λ   (F)  

or  

λ  (F) = λ  ((a, b)) − λ  ((a, b)\) = b − a − λ  ((a, b) \ F) = λ(F) = 

λ (F).  

So F is measurable. 

Note: We cannot use intervals (directly) in the definition of 

inner measure; since set E may not have any subsets which are 

intervals (consider ℚ or ℝ \ ℚ). However, every set has a 

compact subset (since, trivially, the empty set is compact and 

has outer measure 0).  

Theorem:  Let [a, b] be the smallest interval containing set E. 

Then  
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λ (E) = b − a − λ  ([a, b] \ E).  

Proof: First, let F ⊂ E be compact. Then [a, b] \ F is open and 

[a, b] \ E ⊂ [a, b] \ F. then 

λ(F) = b − a − λ([a, b] \ F) (definition of λ for a compact set)  

≤ b − a − inf{λ(G) | [a, b] \ E ⊂ G, G is open}  

(definition of infimum since [a, b] \ F is one specific such open 

G)  

 = b − a − λ  ([a, b] \ E) (definition of λ  ).  

Since F ⊂ E was arbitrary, taking a suprema over all such F 

yields  

λ (E) ≤ b − a − λ  ([a, b] \ E). 

We now need to reverse this inequality.  

Second, let [a, b] \ E ⊂ G where G is open. Then [a, b] \ G is 

compact and [a, b] \ G ⊂ E. Then  

b − a − λ(G) ≤ b − a − inf{λ(G) | [a, b] \ E ⊂ G, G is open} 

(definition of infimum) 

= b − a − λ  ([a, b] \ E) (definition of λ  ) 

Or 

 λ(E) ≥ λ([a, b] \ G) (definition of supremum since [a, b] \ G 

is one specific such compact set) 

= (c, d) − λ((c, d) \ ([a, b] \ G)  

where [c, d] is the smallest closed interval containing [a, 

b] \ G)  

≥ (b − a) − λ((c, d) \ ([a, b] \ G)) (since [c, d] ⊂ [a, b]). 
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If a, b ∈ E, then (c, d) = (a, b) and WLOG we have G ⊂ (a, b), 

so (c, d) \ ([a, b] \ G) = (a, b) \ ([a, b] \ G) = (a, b) \ ((a, b) \ G) = 

G. 

Then  

λ (E) ≥ b − a = λ((c, d) \ ([a, b] \ G)) = b − a − λ(G)  

where G is open and [a, b]\E ⊂ G. Since G was arbitrary (we 

have G ⊂ (a, b) WLOG), taking the infimum over all such G 

gives  

λ  (E) ≥ b − a − λ  ([a, b] \ E).  

Therefore when a, b ∈ E (i.e., when E contains its lub and glb),  

λ  (E) = b − a − λ  ([a, b] \ E). 

 If a is not in E, we see that [a, b] \ E differs from [a, b] \ (E ∪ 

{a}) by only one point. Hence, from an ε-argument, we can 

show that λ  ([a, b] \ E) = λ  ([a, b] \ (E ∪ {a})) (and similarly if 

neither a nor b is in E) and the result follows for arbitrary E. 

Note: We will define a set to be Lebesgue measurable by 

always appealing to bounded portions of the set. Therefore the 

equation  
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λ  (E) = b − a − λ  ([a, b] \ E) has some implication even for 

unbounded sets. The important observation here is that even if 

we approach Lebesgue measure from an inner measure/outer 

measure perspective, we see that the inner measure is 

ultimately dependent only on the outer measure. Therefore, 

there is a degree of redundance in the introduction of inner 

measure at least as long as the above equation holds (and this is 

where the Carathéodory splitting condition arises in Royden 

and Fitzpatrick‘s development). 

Check your Progress -1 

 

Q.1 Give example of On Lebesgue Outer Measure 

___________________________________________________

_________________________________________________   

7.2 LEBESGUE MEASUREBILITY 

Definition Let E be a bounded subset of ℝ, and let λ  (E) and 

λ (E) denote the outer and inner measures of E. 

If λ  (E) = λ  (E) 

then we say that E is Lebesgue measurable with Lebesgue 

measure λ(E) = λ  (E). If E is unbounded, we say that E is 

Lebesgue measurable if E ∩ I is Lebesgue measurable for every 

finite interval I and again write λ(E) = λ  (E).  

Note: Henri Lebesgue (1875–1941) was the first to crystallize 

the ideas of measure and the integral studied in Part 1 of our 

Real Analysis 1 class. In his doctoral dissertation, Intégrale, 

Longueur, Aire (―Integral, Length, Area‖) of 1902, he 

presented the definitions of inner and outer measure equivalent 

to the approach of Bruckner, Bruckner, and Thomson given 

here. His definition of ―measurable‖ is the same as the previous 

definition. Lebesgue published his results in 1902, with the 

same title as his dissertation, in Annali di Matematica Pura ed 
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Applicata, Series 3, VII(4), 231–359. You can find this online 

(in French, or course) at 

https://archive.org/stream/annalidimatemat01unkngoog#page/n

252/mode/2up.  

Carathéodory introduced his splitting condition in 1914. His 

approach is to outer measure and measurability in a more 

abstract setting. His results appeared in Uber das lineare Mass 

von Punktmengen- eine Verallgemeiner ¨ ung des 

L¨angenbegriffs [―About the linear measure of sets of points - a 

generalization of the concept of length‖] Nachrichten von der 

Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-

Physikalische Klasse [―News of the Society of Sciences in 

Göttingen , Mathematics and Physical Class‖] (1914), 404–426. 

Carathéodory‘s original paper can be found online at 

http://gdz.sub.uni-

goettingen.de/dms/load/img/?PID=GDZPPN002504006. 15  

Theorem: λ  is monotone. That is, if E1 ⊂ E2 then λ (E1) ≤ λ  

(E2).  

Proof: Let Ea ⊂ E2. Since every compact set F which is a 

subset of q is also a subset of E2, then  

λ (E1) = sup{λ(F) | F ⊂ E1, F compact} 

≤ sup{λ(F) | F ⊂ E2, F compact} = λ  (E2) 

(since the second supremum is taken over a larger collection of 

real numbers than the first supremum). 

Theorem:  If {Ek} is a disjoint sequence of subsets of ℝ, then  
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This property is called countable superadditivity.  

Proof: Let ε > 0. By the definition of λ (Ek) in terms of a 

supremum, for each k ∈ N there exists a compact set Fk ⊂ Ek 

such that  

 

a property of supremum. Next,  

 

 

Note.:If E ⊂ ℝ is a bounded measurable set, and [a, b] is the 

smallest interval containing E, then  

λ  (E) = (b − a) − λ  ([a, b] \ E) by Theorem 3.4 

or λ  (E) = λ  ([a, b]) − λ  ([a, b] \ E) 

or λ  ([a, b]) = λ  (E) + λ  ([a, b] \ E). (1) 



Notes 

200 

Recall the Carathéodory splitting condition from Royden and 

Fitzpatrick:  

λ  (X) = λ  (A) + λ  (X \ A) 

Equation (1) is simply the splitting condition applied to the set 

A = [a, b]! If E is measurable and unbounded, then the 

condition of Lebesgue measurability implies that the splitting 

condition must be satisfied for all intervals. (By the additivity 

of λ  , we can replace interval [a, b] with any interval and say 

the same thing about unbounded mearsurable sets.)  

Note. Clearly, the splitting condition implies (1) and so Royden 

and Fitzpatrick‘s approach implies the inner/outer measure 

approach to defining Lebesgue measure. We now need to show 

that the inner/outer measure approach implies Royden and 

Fitzpatrick‘s approach and the Carathéodory splitting 

condition. This is accomplished in the following theorem. 

Theorem: Let E ⊂ ℝ is a bounded measurable set (i.e., λ  (E) 

= λ  (E)) and let [a, b] be the smallest interval containing E. 

Then for any set A ⊂ ℝ we have  

λ  (A) = λ  (A ∩ E) + λ  (A \ E). 

Proof: Let E ⊂ ℝ be a bounded measurable set and let [a, b] be 

the smallest interval containing set E. Let A be any subset of [a, 

b]. As already discussed in previous Theorem there is a Gδ set 

G ⊃ A (called a measurable cover of A) such that λ  (G) = λ  

(A). Since A ⊂ [a, b] and set G is Gδ, then WLOG we have G 

⊂ [a, b]: Since  

  is Gδ and, if G is not a subset of [a, 

b], the set G ∩ [a, b] is a Gδ subset of [a, b] and A ⊂ G ∩ [a, b]. 

By monotonicity of λ  , we have  
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λ  (A) ≤ λ  (A ∩ E) + λ  (A \ E). 

So we only need to show that 

λ  (A) ≥ λ  (A ∩ E) + λ  (A \ E). 

Notice that  

 and so by monotonicity of λ   

λ  (E\G) + λ  (([a, b] \ E) \ G) ≥ λ  ([a, b] \ G).                    (1) 

Since we know from Royden and Fitzpatrick that G is 

measurable (in the sense of Royden and Fitzpatrick) and so G 

satisfies the splitting condition and  

λ  (E) = λ  (E ∩ G) + λ(E \ G))     (2) 

(the splitting condition on G applied to set E) and  

λ ([a, b] \ E) = λ (([a, b] \ E) ∩ ([a, b] \ G)) + λ (([a, b] \ E) \ 

([a, b] \ G)) (splitting condition on [a, b] \ G applied to set [a, b] 

\ E) 

 = λ (([a, b] \ G) \ e) + λ (G \ E) since G ⊂ [a, b].                   (3)  

Since E is measurable, by countable additivity  

λ  ([a, b]) = λ  ([a, b] ∩ E) + λ  ([a, b] \ E) = λ  (E) + λ  ([a, b] \ 

E).  

Therefore  

λ([a, b]) = λ  ([a, b] − λ  (E) + λ  ([a, b] \ E)  

= (λ  (E ∩ G) + λ  (E \ G) + λ  ([a, b] \ E)  

since from G is measurable,   from  (2)  

= λ  (E ∩ G) + λ  (E \ G) + (λ  (([a, b] \ G) \ E) + λ  (G \ E)) 

since [a, b] \ is measurable, from  (3) 
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= (λ  (E ∩ G) + λ  (G \ E)) + (λ  (E \ G) + λ  (([a, b] \ G) \ E))  

≥ λ  (G) + λ  ([a, b] \ G) by monotonocity, since G = (E ∩ G) ∪ 

(G \ E) and (([a, b] \ G) \ E) ∪ (E \ G) = [a, b] \ G)  

= λ  ([a, b] ∩ G)   
  ([a, b] \ G) (since G ⊂ [a, b])  

= λ  ([a, b]) = λ([a, b]) since G is measurable  

—splitting condition on [a, b] applied to setG).  

Therefore the inequality reduces to equality and  

λ  (E ∩ G) + λ  (G \ E) + λ  (E \ G) + λ  (([a, b] \ G) \ E)  

= λ  (G) + λ  ([a, b] \ G).  

Subtracting (1) from both sides yields  

λ  (E ∩ G) + λ  (G \ E) ≤ λ  (G).            (4) 

Since A ⊂ G, we have A∩E ⊂ G∩E and A\E ⊂ G\E, and by 

monotonicity  

λ  (A ∩ E) + λ  (A \ E) ≤ λ  (G ∩ E) + λ  (G \ E)  

≤ λ  (G) (by (4)) 

= λ  (A) (since G is a measurable 

content of A).  

Combining this with our first inequality, we have established  

λ  (A) = λ  (A ∩ E) + λ  (A \ E) 

for all A ⊂ [a, b]. Therefore the splitting condition is satisfied 

on E applied to arbitrary set A ⊂ [a, b]. 

Note: Nowhere in the previous proof did we use the fact that 

[a, b] is the smallest interval containing set E. We can therefore 

state:  

Corollary 1: If E ⊂ R is a bounded measurable set (i.e., λ  (E) 

= λ  (E)), then for any bounded set A we have  

λ  (A) = λ  (A ∩ E) + λ  (A \ E). 

Note: Since we (following Bruckner, Bruckner, Thomson) 

have defined unbounded set E to be measurable if, for any 

finite interval I, set E ∩ I is measurable, we can extend the 

previous corollary by eliminating the boundedness restriction:  
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Corollary 2: If E ⊂ ℝ is a measurable set (i.e., λ  (E) = λ  (E)), 

then for any set A ⊂ ℝ we have  

λ  (A) = λ (A ∩ E) + λ  (A \ E). 

Note: In conclusion, we have shown that a set E ⊂ ℝ is 

measurable (i.e., λ (E) = λ  (E)) if and only if the Carathéodory 

splitting condition is satisfied:  

λ  (A) = λ  (A ∩ E) + λ  (A \ E).  

Therefore the inner/outer measure definition of Lebesgue 

measurability (Bruckner/Bruckner/Thomson‘s) is equivalent to 

the splitting condition approach. 

7.3 LET SUM UP 

In this unit we have studied  Lebesgue Outer Measure Theorem in detail 

with examples.we have also studied  Lebesgue Measurebility and 

mnotonically lebesgue outer measures with examples.      

7.4 KEYWORD 

Approach 

Determinancy 

Vitali 

Axiom 

Borel‘s set 

Spprema 

Infimum 

7.5 QUESTIONS FOR REVIEW 

1. Any open or closed interval [a, b] of real numbers is Lebesgue-

measurable, and its Lebesgue measure is the length b − a. The open 

https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Open_interval
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interval (a, b) has the same measure, since the difference between the 

two sets consists only of the end points a and b and has measure zero. 

2. Any Cartesian product of intervals [a, b] and [c, d] is Lebesgue-

measurable, and its Lebesgue measure is (b − a)(d − c), the area of the 

corresponding rectangle. 

3. Moreover, every Borel set is Lebesgue-measurable. However, there 

are Lebesgue-measurable sets which are not Borel sets.  

4. Any countable set of real numbers has Lebesgue measure 0. 

5. In particular, the Lebesgue measure of the set of rational numbers is 0, 

although the set is dense in R. 

6. The Cantor set is an example of an uncountable set that has Lebesgue 

measure zero. 

7. If the axiom of determinacy holds then all sets of reals are Lebesgue-

measurable. Determinacy is however not compatible with the axiom 

of choice. 

8. Vitali sets are examples of sets that are not measurable with respect to 

the Lebesgue measure. Their existence relies on the axiom of choice. 

9. Osgood curves are simple plane curves with positive Lebesgue 

measure (it can be obtained by small variation of the Peano 

curve construction). The dragon curve is another unusual example. 

10. Any line in , for , has a zero Lebesgue measure. In general, every 

proper hyperplane has a zero Lebesgue measure in its ambient space. 
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7.7 ANSWERS TO CHECK YOUR 
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1. Please check section 7.3 
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